
Lock-Free Parallel Feedback Vertex Set
Selection

Daniel Thuerck and Michael Goesele

Graduate School of Computational Engineering, TU Darmstadt

May 23, 2017

Abstract

For large, general MRF MAP problems, the
solver mapMAP [1] has been shown to effectively
use parallel hardware for generating good solu-
tions in less time than the prior state-of-the-
art. With ever-broader SIMD registers and more
and more compute cores, its core computational
block of dynamic programming stands to profit –
though at some point, the tree selection proce-
dure can become a bottleneck for scalability. In
this short report, we describe an alternative tree
sampling procedure that proves to be faster, re-
sulting in better run-time behavior for medium
and large datasets.

1 Introduction

Given an

• undirected graph G = (V, E),

• a label set L and

• cost functions Dv : L → R+
0 for all v ∈ V as well

as Ve : L2 → R+
0 for all e ∈ E

the MRF MAP problem is finding an assignment f :

V → L minimizing

E(f) =
∑
v∈V

Dv(fv) +
∑

e={w,u}∈E

Ve(fw, fu) . (1)

The general case (arbitrary graphs G, arbitrary cost
functions) is NP-hard. There are many heuristics and
even more implementations that attempt to find good

solutions to posed problems, especially for solving la-
belling problems in the computer vision domain. One
solver is our package mapMAP [2], released under the
liberal 3BSD license as open source [1]. This tech re-
port mainly focuses on improving one of its building
blocks’ performance. Thus, the following section gives
a short overview over mapMAP’s core computational
steps and identifies a main bottleneck tackled in this
report.

2 mapMAP and its Scalability

Compared to mapMAP’s release paper [2], some names
and definitions are changed, adopting expressions more
commonly used in the graph algorithms community.
Ignoring the multilevel and spanning tree heuristics
previously described, the two core steps in each iter-
ation are the following:

1. Sample an acyclic coordinate set on the graph G,
resulting in a forest of independent trees.

2. Execute a step of block-coordinate descent by us-
ing dynamic programming to optimize the cost
function (1) on each subtree, updating the current
assignment.

First step. From a bird’s eye perspective, mapMAP
is a block coordinate descent (BCD) scheme optimized
for (massively-) parallel systems. Putting aside the
motivation for the coordinate selection procedure in
step 1, we point out that the tree selection can easier

1

be formulated by focusing on its inverse: Instead of
looking at the nodes it puts into tree, we regard the
nodes it leaves out of the trees. Indeed, these form a
so-called feedback vertex set.
Definition 1. A feedback vertex set for G = (V, E) is
a set V ′ ⊆ V such that G[V − V ′] is acyclic.

Put differently, a feedback vertex set is a set including
at least one vertex of each cycle in the simple graph
(ignoring those of length 2). It is straightforward to
see that G[V −V ′] is exactly the tree decomposition we
desire. Thus, each maximal acyclic coordinate set can
be derived from a minimal feedback vertex set (and
vice versa).

Second step. After sampling such a forest, we pro-
ceed with optimizing the subproblems by dynamic pro-
gramming on the individual trees. Per tree T , this
yields anO(|T ||L|2) algorithm, which traverses the tree
in two passes: bottom-up and top-down. For paral-
lelization, we process each pair of nodes in different
paths from the tree’s root node in parallel, given that
all its children have already been processed. By the
nature of dynamic programming, this algorithm bene-
fits tremendously from vectorization; consequently, our
code selects the maximum possible vectorsize on the
build system, exploiting instruction sets such as SSE
or AVX1/2. For specifics on the algorithm, please re-
fer to the previous paper.

Scalability. For large datasets, the optimization step
scales almost linearly with the number of CPU cores
until a certain point. Given the parallelization men-
tioned above, the limiting factor is the longest path
from the root in each tree. Since this path must be
processed serially, it constitutes a roofline for scalabil-
ity. Consequently, the proposed coordinate selection
algorithm is biased towards building shallow, but broad
trees to avoid lengthy paths in each tree.

As long as the number of cores used does not cross
that barrier, only the coordinate selection remains as a
limiting factor for scalability. And indeed, the more
cores are used, the more relative time per iteration
is spent on coordinate selection: Figure 1 shows a
breakdown of time spent in coordinate selection vs.

time spent in dynamic programming for the datasets
planesweep_1280_1022_96 and citywall-1001 (rep-
resenting medium and large datasets), over the num-
ber of threads used. Each iterations’ total wall clock
time is scaled to 100%. Both experiments show a sim-
ilar thread: With an increasing number of cores used,
the percentage of runtime spent in coordinate selec-
tion (henceforth named FVS) grows from approx. 5%
to almost 30%, confirming its inferior scalability.

From the algorithmic description of the formely pro-
posed FVS algorithm (rechristened optimistic FVS),
one step becomes the immediate suspect for the run-
time behavior: conflict resolution and rollback. Fol-
lowing its randomized nature, we would expect approx.
half of the newly added but conflicted nodes in each it-
eration need to be removed, including rolling back all
marker changes. The serial work involved per node
equals the work in the second phase (check) of the al-
gorithm. With only few nodes to be rolled back and
many cores in use, this results in a situation where
many cores are left unused yet the wall clock time for
conflict resolution equals that of the previous phase.
As a result, compute resources are used badly and this
phase becomes a bottleneck.

Given that analysis, the immediate point of attack for
improving the FVS selection is the conflict resolution
and rollback phase.

3 A new Feedback Vertex Set

Algorithm

In the remainder of this paper, we describe a way to
handle possible conflicts statically, with an acceleration
structure built once for each graph. This allows us
to decouple conflict handling from FVS selection and
delivers an algorithm that is up to 3 times faster than
optimistic FVS.

Static conflict resolution. Figure 2 (b) illustrates the
issue mentioned in the last section: Assume that op-
timistic FVS’s status is as depicted in (a). 5 nodes

1Both datasets and the benchmarking environment are de-
scribed in detail in section 4.

2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32

R
el

at
iv

e
ru

n
ti

m
e

p
er

 s
te

p

Threads

FVS/DP Breakdown per Iteration (ps_1280)

FVS DP

(a) plane_sweep_1280_1022_96

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32

R
el

at
iv

e
ru

n
ti

m
e

p
er

 s
te

p

Threads

FVS/DP Breakdown per Iteration (citywall-100)

FVS DP

(b) citywall-100

Figure 1: Relative time per BCD iteration spent in finding the feedback vertex set (FVS) and executing the
dynamic programming (DP) steps. With more and more threads involved, the limited parallelism of
FVS becomes noticeable.

2
0

2
x

x

1

x

3
x

x

1 0

1

(a)

2
0

2
x

x

1

x

3
x

x

1 0

1

(b)

2
0

2
x

x

1

x

3
x

x

1 0

1

(c)

Figure 2: Conflict resolution principles: (a) shows the current grown tree with markers and nodes in tree (x),
(b) a three-way conflict that has to be handled by optimistic conflict resolution. (c) restricts the nodes
added to the tree in this round by restricting them to one color. Newly added edges are colored in
blue.

have been included into a tree so far and all markers
have been set accordingly. In the next iteration, the
lower three nodes can all be added to the tree in paral-
lel following their markers – which, as (b) shows, leads
to two conflicts (illustrated by dashed red lines). The
minimal conflict resolution would be to roll back the
second node, resulting in a rollback phase that uses
parallel hardware poorly.

Ignoring all nodes but the three conflicted nodes, we
notice that every valid addition to the tree in that step
constitutes an independent (sub-)set of those nodes.
Definition 2. A set of nodes V ′ ⊆ V is called inde-
pendent in a graph G = (V, E) iff G[V ′] has no edges.

As it turns out, the proposed conflict resolution phase
is one way of computing such an independent set. In-
stead of dynamically computing these sets whenever
there is a conflict, we now propose a static way of han-
dling conflicts.

First, notice that given a coloring of the graph, each
color (resp. nodes colored with it) forms an indepen-
dent set.
Definition 3. A coloring of a graph G = (V, E) with
colors C is a function c : V → C such that ∀e =

{v1, v2} ∈ E : c(v1) 6= c(v2).

Therefore, whenever new nodes are added to a tree,
there can be no conflict as long as all new nodes have
the same color. Figure 2 (c) depicts that situation:
The three nodes from before are now colored by red
and green. If either the green or both red nodes are
included, no conflict occurs. Thus, no rollback is nec-
essary. These insights allows us to decouple conflict
resolution from the FVS procedure: A graph coloring
is computed once per graph and can be used in every
FVS computation after that.

3

Algorithm 1 Pseudocode for the colored FVS proce-
dure. The code is for one thread id and assumes the
round color is cr.
1: i← wcr (id)

2: Phase I: grow a new branch
3: if maker(i) < 2 then
4: select random neighbor j that is already in the tree
5: p(i)← j

6: put i into wnew

7: end if
8: Phase II: update markers and fill queue
9: i← wnew(id)

10: for j ∈ N(i) do
11: maker(j)← maker(j) + 1 (atomically)
12: if j not in tree and in_queue(j) == false then
13: put j into queue wc(j)

14: set in_queue(j)← true (atomically)
15: end if
16: end for

Changes to the FVS algorithm. Implementing that
idea requires two major changes to optimistic FVS, re-
sulting in the pseudocode for tread-wise execution of
Algorithm 1. Following the idea of using graph color-
ings, we call the resulting algorithm colored FVS.

First, the immediate consequence of using coloring is
dropping the third phase of optimistic FVS. Conflicts
are avoided by restricting all operations to one color;
hence no rollback has to be performed.

Second, we maintain more than just one queue (opti-
mistic FVS had one input queue win), but one queue
per color. Optimistic FVS kept nodes trying to become
parents in the queue; colored FVS however cannot use
that notion: The color of parents does not help to avoid
conflicts. Thus, the queues now contain potential chil-
dren; in each round, all nodes in a pure-colored queue
find their parent independently. Since each node can
have multiple children, this also removes the necessity
of locking nodes as in optimistic FVS (as long as each
node is only in a queue once, which we check by us-
ing atomics). The implementation of multiple queues
is based on one atomic counter per queue; their sum is
bounded by |V|. Each iteration buffers new nodes in
wnew and can overwrite the queue of its round’s color
immediately. With this, only one queue per color has
to be maintained.

Dataset |V| |E|
plane_sweep_320_256_96 81,920 163,264

plane_sweep_1280_1022_96 1,308,160 2,614,018
citywall-100 8,164,823 12,240,438

pisa-100 25,975,386 38,959,807
vertex_coloring_15M_10D 15,000,000 71,135,959

Table 1: Datasets used for benchmarking.

These changes result in a dramatically simplified im-
plementation. No locks or even spinlocks are necessary,
never is a decision to add a node reversed.

4 Performance Evaluation

We now compare our implementations of optimistic
FVS ([2], version 1.1) against the new colored FVS
(same code, branch lock_free_fvs) on different
datasets (see Table 1) from our original paper [2]. For
coloring, a straightforward reimplementation of IPGC
[3] is used and included into our codebase. In each iter-
ation of colored FVS, the color was is chosen at random
among all colors with nonempty queues. In all bench-
marks, the algorithms were executed 5 times after one
warmup iteration to alleviate their randomized nature.
The times displayed are averaged over all benchmark
iterations.

All benchmarks were executed on a dual-socket sys-
tem with 2x Intel(R) Xeon(R) E5-2687W v3 clocked at
3.10GHz and 128 GB RAM, running Ubuntu 16.04. To
exclude the influence of multi-processor synchroniza-
tion and memory copying, we used taskset to restrict
our process to the first physical CPU and its 10 phys-
ical cores. Hyperthreading was activated at all times.
No other major processes were ran at the same time.
Times were taken using C++11’s chrono functionality
with ms granularity.

The results – i.e. wallclock time for optimistic FVS,
colored FVS as well as the IPGC coloring itself – are
depicted per dataset in Figure 3. Note that the time
for colored FVS does not include the time for coloring,
which is merely a preprocessing step. Clearly, this col-
oring pays off as an acceleration structure if FVS’ are
sampled more than one time.

4

0

10

20

30

40

50

60

1 2 4 8 16 32

R
u

n
ti

m
e

in
 m

s

Threads

planesweep_320_256_96

Optimistic Lock-free Coloring

(a) plane_sweep_320_256_96

0

200

400

600

800

1,000

1,200

1 2 4 8 16 32

R
u

n
ti

m
e

in
 m

s

Threads

planesweep_1280_1022_96

Optimistic Lock-free Coloring

(b) plane_sweep_1024_1022_96

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

1 2 4 8 16 32

R
u

n
ti

m
e

in
 m

s

Threads

citywall-100

Optimistic Lock-free Coloring

(c) citywall-100

0

10,000

20,000

30,000

40,000

50,000

60,000

1 2 4 8 16 32
R

u
n

ti
m

e
in

 m
s

Threads

pisa-100

Optimistic Lock-free Coloring

(d) pisa-100

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

1 2 4 8 16 32

R
u

n
ti

m
e

in
 m

s

Threads

vertex_coloring_15M_10D

Optimistic Lock-free Coloring

(e) vertex_coloring_15M_10D

Figure 3: Performance (execution time) for both FVS algorithms as well as the IPGC graph coloring with
different number of threads involved.

All in all, the benchmarks show that – contrary to our
hypothesis – we could not improve the scalability much.
The development of runtimes with an increasing num-
ber of threads mirrors that of optimistic FVS. Deeper
inspections show that we are now limited by the num-
ber of nodes getting added in each iteration. This num-
ber, compared to scheduling overhead for more threads,
is essentially the bottleneck for better scalability.

However, all benchmarks on medium and large datasets
((b) - (e)) also show a clear advantage in the order of
a 50% up to 350% speedup of colored FVS over op-

timistic FVS. In (a), the dataset and thus the queue
size is just too small to compensate for the overhead of
parallel computation. For all other datasets, increasing
the number of threads until the physical maximum of
10 (i.e. between 8 and 16) shortens the runtime as ex-
pected. The scaling is not linear, but depending on the
dataset in the order of the square root of the number
of threads.

Especially in low-degree graphs such as (c) and (d),
even combining the coloring and a colored FVS yields
a 300% speedup over the old code. Compared to dy-

5

namic programming in Figure 1, the time spent in the
FVS selection thus drops down to approx. 15%, with
the absolute time per iteration with 16 threads short-
ened by more than two seconds. In high-degree graphs
such as (e), the coloring itself suffers from more con-
flicts and takes longer; however precomputing it allows
the colored FVS to avoid these conflicts and save a lot
of rollback operations, as evident by the speedup even
in the single-core case.

5 Conclusion

In this report, we presented an approach to static con-
flict resolution when sampling FVS (resp. its inverse,
a forest on the graph). We used graph coloring to re-
strict the nodes added per iteration and described the
resulting changes to mapMAP’s FVS selection algo-
rithm. Benchmarks of the old and new code showed a
speedup of up to 3 times on medium to large datasets.

While we implemented this algorithm on the CPU,
removing the conflict resolution phase results in less
memory writes and stalls and therefore should be even
more beneficial for the GPU. An integration of a GPU-
implementation of this and other parts of mapMAP is
left as future work.

The code for our lock-free FVS implementation will
shortly be merged into the master branch of our
GitHub repository [2].

Acknowledgements

The work of Daniel Thuerck is supported by the ’Excel-
lence Initiative’ of the German Federal and State Gov-
ernments and the Graduate School of Computational
Engineering at Technische Universität Darmstadt.

References

[1] D. Thuerck, M. Waechter, S. Widmer, M. von
Buelow, P. Seemann, M. E. Pfetsch, and M. Goe-
sele, “A fast, massively parallel solver for large, ir-
regular pairwise markov random fields,” in Euro-

graphics/ ACM SIGGRAPH Symposium on High
Performance Graphics, U. Assarsson and W. Hunt,
Eds., The Eurographics Association, June 2016.

[2] “mapMAP Code on Github.” [Online]. Available:
https://github.com/dthuerck/mapmap_cpu

[3] M. Deveci, E. G. Boman, K. D. Devine, and S. Ra-
jamanickam, “Parallel graph coloring for manycore
architectures,” in Parallel and Distributed Process-
ing Symposium, 2016 IEEE International. IEEE,
2016, pp. 892–901.

6

