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Abstract—Large sparse symmetric indefinite matrices are
notoriously hard to precondition. They often lack diagonal
dominance and exhibit Schur-complements that render zero fill-in
preconditioning ineffective. Pivoting, a necessity for stable LDL ™
factorizations, complicates parallel approaches that can take
advantage of the latest massively-parallel HPC hardware such
as GPUs. We present an approach based on ad-hoc blocking and
reordering strategies that allows local, independent collective-
oriented processing of small dense blocks. A hybrid block-
memory layout compensates for irregular memory access pat-
terns found in sparse matrices. Our method allows restricted fill-
in, supernodal pivoting and a dual threshold dropping strategy
at little additional cost. It delivers robust preconditioners that in
our experiments obtain an average speedup of ~ 6x even for
tough matrices from optimization problems.

I. INTRODUCTION

We consider the solution of linear systems Ax = b where
the coefficient matrix A € R™*™ is sparse and symmetric
indefinite with a solution vector x € R™ and right-hand-side
vector b € R". These linear systems appear frequently in
scientific computing, most notably in Newton-based methods
in numerical optimization.

The direct methods for solving symmetric indefinite systems
often rely on the LDL " factorization, with L € R™*™ being
a lower-triangular matrix with unit diagonal and D € R"*"
a block-diagonal matrix with 1x1 and 2x2 blocks to avoid
breakdown due to zeros on the diagonal. This factorization can
be performed with different (symmetric) pivoting startegies
(partial pivoting, Bunch and Kaufman [_8] and full symmetric
Rook pivoting). Further, in production-grade implementations,
the coefficient matrices are preprocessed by permuting the
largest elements close to the diagonal, equilibrating rows and
columns by scaling, and finding a fill-reducing reordering, e.g.

(QTSPTAPSQ)(Q"S™'PTx) = (QTSP™b) (1)

where P € R™*"™ is a permutation, Q € R"*™ is the
reordering and S € R"*" is a diagonal scaling matrix.
Iterative methods can be an alternative to the direct ap-
proach. In particular, with the broad adoption of parallel
computing platforms, the field of Krylov-based linear solvers
has seen an explosion of research activities. Iterative methods
feature sparse matrix-vector multiplications as their major
computational primitive, attractive for SIMD-style execution.
A drawback of these methods is the need of finding a good
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preconditioner, a matrix M such that M~! ~ A~! and linear
systems with M being relatively easy to solve. The best
preconditioners are often problem-specific, but they require
significant time and effort to be constructed. In the worst
case, the construction itself is not amenable to parallelization.
On the other hand, incomplete factorizations are common
“black-box” solutions [[11]. They combine the advantages (and
disadvantages) of direct and iterative methods. While they
benefit from techniques used by direct solvers, they need
to minimize computation in order to leave enough time for
multiple solves during steps of the iterative method.

In order to be efficient, modern incomplete factorization
algorithms must make good use of available hardware with its
complex memory hierarchy. By tuning several knobs (prepro-
cessing mechanisms, reordering schemes, assembly of dense
operations and the amount of allowed fill-in), the user can
balance between parallelism in the construction and solve
phases as well as quality of the preconditioner to minimize
the overall time-to-solution.

We propose a compromise that combines techniques from
full-blown LDLT with dropping techniques for incomplete
factorizations. We show that it is well-suited for parallel
computing platforms by illustrating its performance on GPUs.
Additionally, we investigate the effect of widely used prepro-
cessing methods, cornerstones of modern indefinite solvers,
with respect to their effect on parallelism in the factorization.
Our contributions are:

o We develop block-oriented iLDL", the first tile-based
incomplete factorization that runs completely on the GPU
and offers supernodal partial pivoting, fill-in and a dual
threshold dropping strategy. Our method solves more
systems than a state-of-the-art CPU-based preconditioner
with full pivoting and achieves speed-ups of up to ~ 22x
with an average speedup of ~ 6x.

« We propose two blocking and reordering schemes which
result in a tile-based matrix structure, that is ideally suited
to exploit local operations on the GPU cores.

o We offer our implementation as an open-source package.
Our code is templated to allow both single and double
precision computations.

II. BACKGROUND

In this section, we outline the basic concepts for (incom-
plete) factorizations and list notable related work. The vast



majority of implementations employ a fixed preprocessing
pipeline. A matching-based permutation first brings the largest
entries close to the diagonal; a symmetrization of the optimal
matching from MC64 (see [14], [18]) also delivers a scaling
matrix as well as a static pivot order with 1 x 1 and 2 x 2
pivots. The largest elements in the resulting matrix have an
absolute value of 1.0, with the largest elements mostly near
the diagonal.

Before applying another reordering to minimize fill-in dur-
ing a factorization, the matrix is compressed such that 2 x 2
pivots are kept. Such fill-in reducing reorderings are often
based on either greedily permuting the elimination tree, see
(SYM)AMD [2] or using nested dissection, see Karypis [22].

Therefore, the pipeline in (I) serves three purposes: Find
an initial pivoting order, reduce the condition number of the
matrix, and reduce the amount of fill-in, thereby decreasing
time and memory consumption.

A. LDLT factorization

Of the different formulations for LDLT factorization, we
use the right-looking, “multifrontal” variant derived from
unrolling the following 3x3 block factorization from the top

Ay Agp A\ (L D1y Ly Ly L,
Asy Agg Ady |=| Lot Loo Dy, Ljy Ly | (2)
Asy Agp Azz) \Lsi L3g L3s D33 L,

leading to the following steps, where (A]; AJ; AJ;)T denotes
the previously processed columns and (Ag; Agy AJs)" the
current (block) column, where Ass is a k X k, k > 0 block:

LosDaoLgy = Agy — LoiDi1Lo, 3)
Lzy = (Aszs— L31D11L3y) Loy Doy 4
Ls33Ds3lis = Asy— L31Di1Lgy — L3aDaoLgy  (5)

Each step is defined on the Schur complement, i.e., the result
of previous rank-k updates (3). In a scalar LDLT factorization
with k£ < 2, this yields Ly; = I and thus 1x1 and 2x2
blocks on D’s block-diagonal. For larger blocks, (3) requires
a separate, often dense factorization of the updated Ass.

In full factorizations of sparse matrices, the final nonzero
pattern is determined in a symbolic stage before the numeric
factorization. Analysis of the Gaussian elimination steps per-
formed during factorization leads to the elimination tree [25],
compactly representing the final layout [12]. Permuting the
matrix by a postordering of the elimination tree often leads to
a packing of the nonzero elements, and thus better cache use.

Apart from computing the D;;-weighted outer product
of Loy in (@) and simple (block-)diagonal scaling in (@),
updating the Ass block in (5) is the most time-consuming
computational primitive. For sparse matrices, this yields many
indexing operations and irregular memory accesses. Many
major performance improvements of direct methods in the
past 25 years are due to organizing these updates in a way
that allows efficient use of smaller, dense kernels. Starting
from a postordered matrix, neighboring rows (resp. nodes
in the elimination tree) with the same or similar nonzero

pattern are amalgamated, resulting in “supernodes” that are
represented during the factorizations as small, dense matrices
[16]. Operations on these smaller matrices are handed off to
highly-optimized BLAS libraries, which more than offset the
costs of the additionally required scatter and gather operations.

For a reliable LDL " factorization, partial pivoting is often
mandated. In general, pivoting operations change the elimi-
nation tree, thus triggering an additional round of symbolic
analysis. Highly optimized packages thus use methods such
as deferred pivoting [20] or restrict pivots to supernodes [36].

B. Incomplete factorizations

An incomplete LDLT factorization results in matrices L, D
such that (LDLT)~! ~ A~'. Incomplete factorizations drop
elements according to a set of rules. Most implementations
adhere to one or a combination of the following principles:

o Level-of-fill: Let the level of all nonzero elements of A be
defined as 0. Then, other element’s level is recursively set
to WI(ls;) = maxycming,j) UV1(Lir), IVI(Ix;) } 4 1. With
the assumption that the magnitude of elements shrinks
with higher levels, which holds for specific matrices
(e.g., five-point matrices [34]]) the permitted level-of-fill
is bounded by the user [11], [27]. Such factorizations are
often denoted by LDL (k) for level k.

e Threshold dropping: During factorization, all elements
with magnitude smaller than a fixed threshold 7 times the
row/column 2-norm are dropped. Additionally, a specific
capacity threshold ¢; per i-th row/column can be set prior
to starting the factorization so that only the largest c;
elements are kept per row [5], [7], [17], [32]]. These
threshold-based methods have been found to work better
on general matrices, where the assumption regarding
magnitude decay over levels of fill does not apply.

Due to dropping, near-zero pivots occur and can be dealt
with by adding a perturbation onto the input matrix or post-
poning that pivot to a later step [6], [7].

C. Farallel approaches

There are mainly three sources of parallelism to be explored
when solving linear systems: First, replacing dense linear
algebra calls by parallel alternatives [5S[, [24], [30], [36].
Second, analyzing the dependecies in the nonzero sparsity
pattern of the matrix. Then, the resulting dependency graph
is either executed directly as in DAG-based methods [19]]
or level sets of rows/cols are discovered and explored [1]],
[28]. In particular, greedy multicolor (GMC) reorderings have
been shown to shrink the number of level sets [26], [27],
[35]]. Third, a number of authors have proposed methods that
compute incomplete factorizations for near diagonal-dominant
matrices by iteratively solving a system of nonlinear equations
by a fixed-point, asynchronous Jacobi method. This approach
is applicable to both solution of triangular systems [3] and
ILU(k)/IC(k) factorizations [10]]. A recent extension enables a
form of threshold dropping [4].



D. Recent trends in GPU architecture

One specific instance of massively parallel HPC hardware
are NVIDIA’s CUDA-enabled GPUs. Starting with the intro-
duction of the Kepler architecture, the card’s compute units
are partitioned in more but smaller entities. I.e., the number
of streaming multiprocessors (SMs) has grown faster than the
number of CUDA cores (i.e. threads). Each SM schedules
threads in groups of 32, so-called warps. These groups can be
cheaply synchronized and share their registers using collective
operations, such as warp-shuffles. Additionally, the size of
the SMs’ register files has grown and can now be used more
effectively together with the warp operations. Finally, the Volta
architecture has “Tensor Cores” for fast 4 x4 matrix multiplica-
tion in half precision. The combination of these developments
allow fast processing of local data in a cooperative manner in
small groups of threads, e.g. warps.

III. BLOCKING, REORDERINGS AND PARALLELISM

The effectiveness of a block-based factorization crucially
depends on the partition of a sparse matrix into blocks. Finding
and exploiting block-structures has been investigated by many
authors (see, e.g., [5], [31]], [33[], [35]). In general, the objective
of “blocking” the matrix A, i.e. permuting and determining
the block starts, is to minimize the number of filled blocks
while maximizing the number of nonzero entries in each block.
Ideally, not just A’s entries, but also future fill-ins during the
factorization are considered. Since we use GPUs and heavily
rely on warp-centric operations, most block-based operations
take roughly the same amount of time as a 32x32 block.
Consequently, we need to find much larger blocks than in
previous work. If these blocks happen to be sparse, our hybrid
block format still avoids wasted storage. As outlined in Sec.
[ several reorderings have been used for varying purposes,
e.g. reduce fill-in or the number of level sets. Since both
reordering and blocking affect the number of level sets as
well as the quality of the resulting preconditioner, we outline
two strategies for computing blockings. The two strategies are
then compared considering the level-of-fill in a factorization
and their effect on parallelism.

A. Blocking strategies

We distinguish two different blocking strategies:

1) Strategy BR: In order to find blocks, we first group rows
of the matrix with similar patterns and permute them next
to each other. Applying that permutation to both sides of the
matrix immediately yields a blocking structure. To detect rows
with similar layouts, we use cosine-based blocking [33]].

As Bollhofer [5] notes, this often leads to small blocks far
from 32x32. We thus adapt a multilevel strategy: since our
hybrid block format can efficiently handle larger, sparse blocks
to a certain degree, we apply the same cosine-based dropping
to the coarse matrix, built from the blocks found in the earlier
step. This method can be repeated recursively until the coarse
matrix is sufficiently small. To facilitate merging on coarser
levels we decrease the similarity threshold over the hierarchy;
we start with a threshold of 0.8 and reduce it by a factor of 0.9
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Figure 1: Statistics and patterns for BR and RB strategies,
including the number of nonzero blocks (solid line) and level
sets (dashed line) for different levels of fill with AMD (red),
RCM (green) and GMC (blue) reorderings.

per iteration. Finally, on the last level, we apply the selected
reordering (AMD, RCM or GMC).

2) Strategy RB: We first apply a reordering to the co-
efficient matrix and then perform blocking. Again, we use
cosine-based blocking; different than before, the blocking
must preserve the ordering of rows and columns - thus, only
neighboring rows can be clustered into the same block.

In the former strategy we are applying the reordering
on a smaller coarse matrix C, while cosine-based blocking
requires, in the worst case, to compute C’kC,;r at each level
k of the hierarchy. In the latter strategy we only need to
compute a superdiagonal of AAT once, but the effectivenes
of the blocking depends highly on the reordering success in
clustering rows with similar sparsity pattern.

B. Effectiveness and parallelism

We applied both strategies to our test set (see Sec. [V). Fig[l]
shows results for three matrices representing the trends found
in the whole dataset. The matrices in the test set can effectively
be separated into “deep” and ““shallow” matrices with regard to
their number of level sets. We omitted the option to not reorder



the matrix as these initial layouts often led to a massive fill-in,
exceeding the host’s memory capacity.

The first two rows in Fig. [T| show deep matrices. Here, fill-
in reducing orderings succeed in keeping the number of fill-in
blocks low over the levels of fill; GMC reordering, on the
other hand, quickly adds a high amount of fill-in and looses
its level-set reducing effect. While RCM sometimes creates
less fill-in than AMD, especially for a small bandwidth matrix,
packing elements close to the diagonal increases the number
of level sets fast. Interestingly, in G3_circuit with RB ordering,
the level sets created from RCM saturate fast; a sign that few
levels of fill-in get close to the full factorization. This matrix is
also one of the few examples where the RB strategy dominates
BR; the initial layout of the matrix already exhibits similar row
patterns close to the diagonal. In both shallow matrices, the
GMC reordering distributes relatively dense submatrices over
the independent sets, leading to fill-in later. nlpkkt120 is one
of the few “shallow” matrices in our set. Even though GMC
quickly adds more fill-in over the levels, it keeps the number
of level sets small in both strategies. Shallow matrices often
benefit from parallel processing for both incomplete and full
factorizations.

These plots highlight two points: First, the effect of reorder-
ings when adding fill-in is highly matrix-dependent, including
the choice of strategy. For the majority of the matrices, BR
was the better choice as the early row amalgamation changes
rows’ patterns, making them more similar. Contrary to zero-fill
preconditioners, the GMC reordering delivers poor results on
deep matrices. AMD and RCM, as fill-in reducing permuta-
tions, consider future fill-in when permuting the matrix, GMC
does not. Second, the classical choice for full factorizations,
AMD, offers a decent compromise. We did not find any
example where AMD delivered the worst results of these three
reorderings.

IV. A BLOCK-ORIENTED iLDLT WITH PIVOTING

We now present a block-oriented iLDLT preconditioner
that benefits from the recent trends in GPU architecture briefly
mentions in Sec. We assume that the input matrix A has
been appropriately permuted and scaled in the preprocessing
phase. Additionally, we assume a partition of rows (and,
due to symmetry, columns) has been computed, as shown in
the previous section. We use the blocks resulting from the
partition in two ways: first, they fit into an 32x32-sized tile
of shared memory for on-chip processing; second, we allow
arbitrary fill-in inside of all allocated blocks but none outside.
The resulting preconditioner is thus a hybrid of a level-based
iLDLT (p) and a pure, thresholded iLDLT(7) factorization.
It is characterized by three parameters: The level-of-fill [; that
defines which of the blocks in the partitioned matrix may
contain entries, a threshold 7 for dropping of elements and
a fill ratio 7 that determines how many elements each block
may contain. All set-up is executed on the CPU; after upload,
the complete factorization is performed by the GPU.

Algorithm 1 Block-oriented iU " DU factorization
(with deferred updates for one level £;)

for block row i € £; do
[Uss] <= apply_sym_updates(Us;)
[Uiis Dis, P;;] < factor_diagonal_block(Us;;)
for block (¢,7),7 > i in block row ¢ do
[Ui;] < apply_nonsym_updates(U;;)
(U5 = (PiuUij)U;; ' Dyt
end for
[r] = rowwise 2-norms of [Us; ... Uin]
for block (,7),j > i in block row ¢ do
[U;;] < = block_row_dualdrop(U;;)
compress_store(Uj ;)
end for
end for

A. Preprocessing and Setup

Initially, the sparse input matrix A in CSR format is
expanded into COO-format and all elements are mapped to
their respective blocks. We then sort the resulting coordinate
pairs and, after reduction, produce a COO description of the
blocked (“coarse”) matrix. We then generate CSR and CSC
representations for the coarse matrix. We work on a transpose
of L and thus actually compute an iU " DU factorization.

We add blocks for fill-in according to [ ;. Hysom’s algorithm
[21] allows computing such fill-in in parallel per row. With
new blocks integrated into the coarse CSR representation, we
then collect A’s nonzero entries per block and determine the
maximum number of elements per block as max_nnz(U;;) =
r¢-nnz(U,;). For (empty) fill-in blocks, we base their allowed
fill on the average number of nonzero elements in all occupied
blocks in the same block row.

Our blocks are saved in a hybrid format: either sparse,
with indices and values, or dense. We choose the format
with smaller memory footprint given the maximum number of
elements computed earlier. Blocks on the block-diagonal of U
(dubbed “diagonal blocks”) are, however, always set to dense
- as well in the bottom 1% of blocks, where many updates
occur. A compensation factor of 0.5 accounts for the additional
indirect addressing when working with sparse blocks.

Finally, similar to Naumov [29]], we compute level sets
on the coarse graph which dictate the processing order for
factorization and sort the blocks in memory after the number
of their level set. We allocate an array of 32x32-sized, dense
blocks to keep dense blocks processed in the curent level in
memory (“in-flight” blocks).

B. Factorization

The high-level structure of our factorization algorithm is
given in Alg. In order to avoid repeated load and store
operations, some functions are merged into one kernel. This
section describes the resulting kernels.

A notable change to the derivation in (2) is the handling of
updates: While (3) amounts to pushing the results of the outer
products L31D11L;1,L32D22L§—2 to the Schur complement,
we use a pull principle: A block pulls in, i.e. applies, all
updates once it is in the current level. This strategy avoids
multiple applications of the dropping rules.
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(a) Symmetric updates.

Figure 2: Block updates. @) For diagonal block (i,%), all
blocks (k,7) (column ¢ marked with red arrow) for k < ¢ are
required. Similarly, the dense factorization step modifies D’s
ith block. (b) For off-diagonal block (i,7), all blocks (k,7)
and (k,7) (columns 4, j marked with green arrows) for k < i
as well as the kth block of D are required.

(b) Nonsymmetric updates.

Following the architectural changes in GPUs, we process
blocks in shared memory whenever possible and use collective
operations to avoid coarse-grained synchronization inside of
blocks. To that end, we implemented most BLAS-like op-
erations in a cooperative manner, where tasks are mapped
onto groups that correspond to (parts of) a warp. Whenever a
matrix product needs to be computed, we transpose one of the
operands to avoid bank conflicts during the multiplication.

1) Diagonal blocks: Before factorizing a (dense) diagonal
block Uj;;, we pull in the updates U,;EDkk Uy; for k < i, which
are all found in the column 7 (see Fig. [2a)), using the coarse
CSC representation on the device. Each diagonal block is
processed by one CUDA block. All updates, are also expanded
into shared memory. The outer product is computed row-wise,
each row assigned to one warp.

All blocks have at most size 32x32, enabling us to perform
the subsequent, dense U " DU factorization step on the result
of the updates using a single warp. The dense factorization fol-
lows the same steps outlined so far, except for a push strategy
for updates. The application of small, independent and dense
block-factorizations allows efficient supernodal pivoting; we
implemented three pivoting strategies using 1x1 and 2x2
pivots:

1) None/static pivoting with 1x 1 or 2x2 pivots from MC64

2) Bunch-Kaufmann (partial) pivoting (scans 2 cols / step)

3) Rook (full) pivoting (possibly scans all columns)

With one warp computing the factorization, all comparisons
can be handled efficiently with warp shuffle operations.

The resulting triangular matrix with a pivoting permutation,
is stored as dense, 32x32 block in the in-flight storage (as
B;;). This kernel also contains a step that sums up the square
of entries per row in the block for later use during dropping.

2) Off-diagonal blocks: Similar to the diagonal blocks, off-
diagonal blocks U;;, for j > ¢ first pull in their updates.
In order to do that, the block columns ¢ and j have to be
traversed. The intersection of the columns’ row indices yield
the necessary updates (see Fig. 2b). Per common row, the
pair of update blocks is loaded into shared memory and the
outer product is computed (again in one CUDA block, as

Algorithm 2 Conservative protocol for distributing leftover
memory to an oversubscribed in-flight block B; ;

required = nnz(B;;) — capacity(U;;)
wasfree = atomic_subtract(leftover, required)
granted = max(min(required, wasfree), 0)
giveback = required — granted
if granted > O then
atomic_add(leftover, giveback)
return granted {extra units of memory for saving B;; to block U; ;}
end if

above). Once all updates are applied, we first permute rows
according to the block rows’ permutation vector from pivoting.
Next, each column of the block is solved with Uj;, D;;.
The dense triangular solve is performed with one warp per
column. Finally, the block is saved to in-flight storage (as B;;).
Using atomics, finalized blocks contribute the row-sums of the
squared entries for the following threshold dropping.

3) Dropping: If pivoting was used, an additional step
becomes necessary before dropping: All superdiagonal blocks
in the current block column need to be column-permuted
according to the diagonal blocks’ permutation vectors. Since
permuting entries does not add additional elements, the op-
erations may be done in-place in global memory (for sparse
blocks, only the indices need to be changed; for dense blocks,
warps reorder the columns).

We implement a dual pivoting strategy, following Saad [32]:
First, we drop all elements uy; < 7||ug.||2 by setting them to
0. The number of remaining nonzeros is then counted and,
if it exceeds max_nnz(U;;), only the elements with largest
magnitude are kept. For the latter, every thread in the block
stores 4 matrix elements. A collective block-wide radix-sort
yields the elements in the order of their magnitude. The first
max_nnz(U;;) can then directly be stored in the block storage
in the case of a sparse block. For dense blocks, naturally, no
dropping is performed.

By setting a maximum number of entries to a fixed number
per block, we enable each block in the current level to be
processed separately. However, this restricts the layout of
the preconditioner and could worsen its quality. As a relief,
we propose a protocol that roughly emulates an area-based
heuristic by Li and Shao [24]. Memory that was reserved for
blocks in previous levels but not used is redistributed. As a
consequence, the fill-ratio 7 holds for the whole matrix, not
for each block.

An outline of the protocol, applied to a single dense block
B;;, is given in Alg. 2| During the whole execution, we keep
an atomic counter (leftover) for the space left. In our protocol,
each thread first determines how much additional memory is
needed and subtracts that amount atomically from the leftover
counter, returning the old value. If the latter is positive,
we compute the amount of extra space provided. Since we
subtracted the complete amount of memory requested, we then
add the difference to the amount of memory granted back
(“giveback”) to the leftover counter, atomically. This protocol,
however, is not exact, but conservative: If a block asked for
more memory than was left over, the leftover counter becomes



negative. Blocks that return their giveback after that increase
the leftover counter, but as long as it is negative, no further
memory can be distributed to other blocks. Only when the first
block returns its giveback, the leftover counter is positive. This
is due to the separation of the two atomic updates to leftover;
the protocol thus may underestimate the amount of memory
to distribute, but it never overallocates it.

In the setup phase, we order the blocks in memory by levels.
Using an additional atomic counter for the total memory used,
we can save the extended blocks in-place.

C. Blocked triangular solves and SOMR

We solve using iterative methods, with the block-
oriented iLDL" preconditioner. In each step of the iterative
methods, solve operations with L, D and LT are executed.
Since D is block-diagonal with 1x1 and 2x2 blocks, the
operation is trivially parallelizable. For L and LT, we can (as
in the factorization) exploit the discovered level sets, see [28]],
or use fixed-point methods, see [3], [9]]. We reuse the level sets
from the factorization — in the same order for L and inverted
for LT. By replacing the scalars in a level-scheduled triangular
solve algorithm, we arrive at a block-based algorithm. In
our implementation, each CUDA block handles one matrix
block; in the first kernel, each off-diagonal block is multiplied
with the corresponding solution components by a single warp;
lastly, a solve operation in a second kernel results in another
part of the solution vector.

Since both A and LDLT are indefinite, we use SQMR
[15] as the method of choice. To allow for an indefinite
preconditioner with split preconditioning, we use the D-
symmetric version from [15]].

V. EVALUATION

We use a test set with 17 symmetric indefinite matrices
also used in [17]], [20]. All matrices are taken from [13]]
and preprocessed using symmetrized MC64 [18]. Also, we
added KKT matrices resulting from an interior point method
for linear programs. We created the test set by downloading
mps files from MIPLIB [23]], geometrically scaling the LPs,
standardizing the LP format and then adding a diagonal in the
(1,1)-block of the KKT matrix with random positive elements
from (0, 1) that span a logarithmic range of 10~%. All right-
hand sides in the experiments were created by multiplying the
input matrices with an all-1 vector. We computed the blockings
and permutations for both strategies offline. For fairness, the
preprocessing time for all evaluated packages was excluded
from the comparison.

We compare our preconditioner with SYM-iLDL [17]
(Github commit d4b862b), using the CLI “ldI-driver” and
varying levels of fill between 4.0 and 8.0, following the paper.
When handling difficult, indefinite linear systems, pivoting is
often required for good accuracy despite its negative effect on
parallelism (pivoting and parallelism are often two conflicting
design goals). Thus, it is valid to compare our approach to
this sequential package. Note that while the solve phase using

SQMR could be parallelized, we often received large numeri-
cal errors with cuSPARSE for the resulting triangular factors.
We also compare to a fixed-point method, ParILU with levels-
of-fill between 1 and 3 using the authors’ implementation in
their MAGMA library [37]]. All solvers use the same input
permutation for each matrix.

All experiments are performed on a system with an Intel i7
3930K processor, 64 GB RAM and Ubuntu 16.04. We bench-
mark on a NVIDIA K40 and a TITAN V GPU with CUDA
9.2 (driver 396.44). With the blocking strategy, reordering,
level-of-fill, fill factor, dropping threshold, pivot strategy and
precision (given in that order in Tab. [I[) we handle a huge
parameter space. Since the influence of these parameters can
be highly nonlinear (see below), we manually explored the
space and only present the best result in terms of runtime that
we found. These results are thus upper bounds on the best
possible runtime. For a fair comparison, we did the same with
our competitors: SYM-iLDL’s fill factor was varied between
4.0 and 8.0, ParILU’s level-of-fill between 1 and 3. We split
all reported times in factorization and solve phase (and, in our
case, an additional setup for the triangular block-solve).

Tab. [I] shows overall runtime. The experiments with
MAGMA confirm that indefinite matrices are notoriously hard
to precondition: It fails to converge after 1000 iterations with
its ILU in all cases but one; it is thus mostly excluded
from Table [l A second observation regarding convergence to
the desired relative residual of 10~ is shared between our
approach and SYM-iLDL: a large fill factor of between 4.0
and 8.0 is necessary as well as a smaller dropping threshold
than often used by default (10~%). SYM-iLDL, being a scalar,
sequential implementation, works best when the factors are rel-
atively sparse (SilOH16) or our code suffers from tiny blocks
(boydl). The choice of blocking and permutation method is
critical for our code’s performance. Setup and overhead are
comparable between the two implementations, as shown by the
similar performance on smaller matrices where the overhead
dominates factorization time.

Tab. [II] reports the block sizes and the amount of nonzero
elements inside these blocks (dubbed “fill”) for input and
factorized matrices. Dense blocks are counted with fill = 1,
which explains the differences of fill increase compared to
the selected fill factor. These statistics correlate well with the
matrices where we achieve the highest speed-ups compared
to SYM-ILDL: most fill-in elements fall inside of our blocks,
allowing effective pivoting and capturing the preconditioner
better. For the large nlpkkt* matrices, this leads to an excellent
preconditioner quality and runtime. For the matrix bley_xl1,
no working preconditioner could be generated by any tested
package. In such hard cases, a direct methods is the method of
choice. Even in easier cases, double precision was necessary
for a successful preconditioner generation and application.
Notable exceptions are co-100 and nlpkkt80, where single
precision and a moderate fill and dropping threshold were
sufficient for the desired accuracy.

We also include results for both the K40 as well as the
TITAN V. Our approach was specifically designed with the



Matrix ‘ Package ‘ Runtime (s) ‘

map06 [23 SYM-ILDL (4.0, 8.0)
m = 703,690 344 + 003 + 2.5, 16 it K40
’ s (BR, AMD, 0, 4.0, 104, BK, D » 101t
nnz = 1,895,362 | ° BR - 0.40. 1075 BK. D) 1 ==e 002 + 033, 16 it, Tian V
bley_xI1 |23 SYMILDL (4.0, 8.0) T
m = 354,783 T
: s (all
nnz = 2,264,600 | O @V T
cbig (17 SYM-ILDL (8.0) T
m = 345,241 s 834 + 0.02 + 17.6, 56 it. K40
nnz — 2,340,859 | O BRAMD. 1. 801075 BK. D) 33077338, 56 it Tian v
0-100 [23] SYM-ILDL (8.0) T
m = 52,618 861 + 002 + 047, 4 it., K40
' BR, AMD, 2, 4.0, 10~%, Rook, S AL
nnz = 4,046,008 | O ¢ < Rook §) 1 T+ 0.02 + 0.11, 4 i, Tran V
bab3 |23 SYM-ILDL (8.0) T
m = 435,381 ours (RB. AMD, 1. 8. 105, Rook, D) _|_2-35* 001 + 470,36 it. K40
nnz = 7,053,012 1.74 + 0.01 + 1.26, 36 it., Titan V
G3_circuit 20 SYM-ILDL (8.0) 735+ 11.93

m = 1,585,478
nnz = 7,660, 826

7.93 +0.12 + 21.6, 72 it., K40

s (RB, AMD, 1, 8.0, 10~%, BK, D
ours (RB, 1,80, 10 ) 293+ 0.2 + 505, 72 it, Tian V

BenElechil [20] | SYM-ILDL (8.0) 8.09 + 273
m = 245,874 2.96 + 0.01 + 7.02, 88 it., K40
’ s (BR, AMD, 4, 8.0, 10~%, BK, D d
nnz = 13,150,496 | ° BR- -4 801075 BK. D) (001 + 1.57, 88 it, Tin v
af_shell7 [20 SYM-ILDL (4.0, 8.0) T

m = 504,855
nnz = 17,579, 155
nlpkkt80 [17
m = 1,062,400
nnz = 28,192,672
nlpkkt120 |17
m = 3,542,400
nnz = 95,117,792

534 +0.02 + 182, 64 it., K40
3.15 + 0.02 + 10.1, 64 it., Titan V
56.16 + 118.55

1.87 + 0.04 + 7.58, 196 it., K40
2.65 + 0.04 + 3.86, 196 it., Titan V
SYM-ILDL (4.0, 8.0) i

23.89 + 0.21 + 67.4, 96 it., K40
11.04 + 0.19 + 19.4, 96 it., Titan V

ours (BR, AMD, 4, 8.0, 10~%, Rook, D)

SYM-ILDL (4.0)

ours (BR, AMD, 0, 8.0, 104, BK, S)

ours (BR, AMD, 0, 8.0, 10~8, Rook, D)

Table I: The runtime of the software packages. It is reported
as x + [y] + z, where x denotes preconditioner computation,
y optional preconditioner analysis and z time taken by the
iterative method. We also report number of iterations (it.) taken
to convergence, while 1 denotes the lack of convergence.

latest advances in GPU architecture in mind — and that is
visible in the results. Besides an 2x improvement across-the-
board for the factorization phase, the solve phase benefited
more: Our implementation relies on double precision atomics,
which are implemented in hardware on the TITAN V but are
emulated through integer atomics on the K40.

The effects of parameters on our preconditioners are often
nonlinear and counter-intuitive; the characteristics vary be-
tween matrices. We try to capture some of that by presenting
two extremes per parameter in Fig. 3] First, the level of fill
(Fig. @: some matrices, here co-100, behave as expected
with better preconditioners for higher levels that reduce the
number of iterations but increase the number of level sets. For

gpband {17] SYM-ILDL (8.0) 0.01 + 0.04
_ : Matrix Mean block size | Mean fill Input | Mean fill Output
m = 20,000 ours (BR, AMD, 0, 40, 10~4, BK, D) 313 + 0.05 + 449, 1 it, Kfto l [ [ p [ P ]
nnz = 45,000 0.01 + 0.00 + 0.01, 1 it., Titan V qpband 16 0.375 1
marinozosl |11371 SO A0 g;: +((:.g(l) 0.65, 30 it., K40 mario001 712.68 0.05 0.25
m = 38,434 . _8 .26 + 0.00 + 0.65, 30 it., ;
nnz = 204,912 | O (BRAMD. 3,80, 1075, Rook, D) =062 620. 30 it Titan v babs 400.05 0.04 049
babs (23 SYM-ILDL (8.0) 031 + 081 g_'71%)H16 22§;§ (;)611 8(2)2
m = 30,199 - N 0.17 + 0.00 + 0.18, 8 it., K40 1 - : .
nnz = 343,545 | O™ RB AMD. L 80,1075 Rook. D) =554 666,05, 8 it Titan v boyd| 15.02 0.58 0.99
¢-72 |17 SYM-ILDL (4.0) 0.96 + 2.58 Lin 708.24 0.01 0.19
m = 84,064 N 225+ 001 + 1.87, 11 it K40 map06 146.83 0.16 0.66
nnz = 707,546 | OO BRAMD, 1, 80,1075, BK, D) o 0.5, 11 ie, Tian V bleg 0 13677 012 )
Si10H16 [20] MAGMA PBiCGStab + ILU(3) 316 + 0.54 c-big_ 787.99 0.07 075
m = 17,077 SYM-ILDL (8.0 0.32 + 0.37 = : :
n'::; — 875,023 — 262 : 0.01 + 039, 8 it., K40 co-100 299.99 0.09 0.47
=e RB, AMD, 3, 40, 10~4, Rook, D) |= - o
ours ( : : 262 + 0.01 + 037, 8 it,, Titan V bab3 649.77 0.04 0.41
boydl 17 SYM-ILDL (8.0) 0.06 + 0.06 G3_circuit 265.99 0.03 0.61
m = 93,279 ours (RB, AMD, 0, 40, 10-%, BK, D) 1.62 + 0.02 + 2.98, 1_ it., 340 BenElechil 590.9 0.08 0.99
nnz = 1,211,231 0.98 + 0.01 + 0.1, 1 it., Titan V affshell7 467.17 0.1 0.98
Lir;léoboo SO G0 11‘.;; 83 34 181, 168 it., K40 nIpkki80 089.39 0.03 0.31
m = 256, _ 73 +0.04 + 18.1, it.,
ninz — 1,766,400 | O (RB- AMD. 1, 80,1075, BK, D) (e G g e i v nipkkt120 1001.67 0.03 0.32

Table II: Fill statistics for matrix blocks.

other matrices, such as Lin, a higher number of levels after
a threshold results in an unstable preconditioner. Here, more
aggressive dropping might help. Alone, the dropping threshold
(Fig. Bb) often has small influence on the results, especially
if the matrix has mostly dense blocks, where dropping is not
applied. The fill factor often has a much larger effect (Fig. [3¢).
Naturally, the average block fill increases in conjunction with
that parameter — but the number of SQMR iterations does not
necessarily decrease accordingly; often, tiny elements are kept
in denser blocks that do not effect the solution much. Lastly,
the effect of supernodal pivoting (Fig.[3d) is split: For matrices
such as map06 where MC64 was able to determine good
pivots and the off-block-diagonal elements are small, there
is not much difference to static pivoting. For other matrices,
see e.g. bab3, pivoting is necessary for a working precondi-
tioner. We observed multiple cases where pivoting allowed a
preconditioner computed in single-precision to be effective.
Combining a single-precision, pivoted preconditioner with a
double-precision solve and SQMR could be advantageous.

VI. CONCLUSION AND FUTURE WORK

Symmetric indefinite systems can be hard to precondition.
Our approach combines techniques from full and incomplete
factorizations and leverages recent changes in GPU archi-
tecture, yielding short runtimes and effective preconditioners
for large, sparse matrices. The approach, rare for GPU-based
implementations, allows restricted fill-in and pivoting. We
plan to open-source our implementation to the community.
In future work, we plan to investigate selection heuristics for
our blocking strategy as well as parameter guidelines, possibly
using machine learning, and to apply the same principles to
other incomplete factorizations, such as iLU and iQR.
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APPENDIX A
ARTIFACT DESCRIPTION APPENDIX: “A BLOCK-ORIENTED,
PARALLEL AND COLLECTIVE APPROACH TO SPARSE
INDEFINITE PRECONDITIONING ON GPUS”

A. Abstract

This artifact includes software, data and instructions re-
quired to replicate our results from Sections [[TI] and [V] as well
as perform further experiments on different data sets. A dock-
erized, scripted artifact execution process allows replication of
our results and application to other datasets.

B. Description

1) Artifact meta information:
o Algorithm: block-iL DL using a predefined permutation and

blocking
« Program: C++/CUDA programs;
culip-blocking-stats for  Section [ and

culip-block-ildlt for Section[V]

o Compilation: CUDA compiler nvcc as part of CUDA 9.2,

used with gec-7.3.0 as host compiler

« Data set: Matrices publicly available in the UFL collection as

well as matrices constructed from IP problems in MIPLIB 2010

« Hardware: see hardware setup in Section

o Output: Runtimes for factorization, analysis and solve phase

resp. level-of-fill statistics

« Experiment workflow: Download artifact, execute build pro-

cess, execute program per matrix, observe printed results

o Experiment customization: Yes, software accepts arbitrary

symmetric indefinite matrices and blockings with block size <
32

o Publicly available?: Yes

2) How software and data can be obtained: The artifact
— including the automatic build process — can be obtained
from our Github repository at https://github.com/dthuerck/
1a3-18-artifact). This will automatically download the source
code from https://github.com/dthuerck/culip. All contents of
this artifact are licensed under a liberal 3BSD license.

3) Hardware dependencies: Our implementation requires
a CUDA-compatible GPU with a compute capability (CC)
of at least 3.5. To use fast atomics for double precision
computations, we require at least compute capability 6.0.

4) Software dependencies: The artifact requires installation
of the following packages: python3, nvidia-docker, docker-ce,
CUDA 9.2 and CMake > 3.2. The docker container uses an
Ubuntu 18.04 base package. We tested the artifact exclusively
under Ubuntu 18.04 with CUDA 9.2 installed.

5) Datasets: All matrices from UFL used in [17] and [20]
have been preprocessed with MC64. Since MC64 requires
a commercial license for some users, we also uploaded the
processed matrices. The MIPLIB matrices were generated by
removing symbolically dependent rows and 4 rounds of geo-
metric scaling. The diagonals of their KKT form were filled
with randomly generated numbers in (0, 1) that logarithmically
span 6 orders of magnitude to simulate a late IPM iteration.
These matrices are downloaded as part of the build process.

C. Installation

After cd’ing into the cloned repository, execute the follow-
ing command:

$ sudo python3 artifact.py setup

Note that using sudo is required for standard installations of
docker and can be avoided by modifying the docker instal-
lation accordingly. The command sets up a docker container,
clones the culip repository, builds the code and downloads our
benchmark matrices.

D. Experiment workflow

We describe the necessary actions to replicate the exper-
iments in Sections and [V| as well as the application of
culip-block-ildlt to other matrices.

1) Section [[Tl; This section reports block counts and level
set statistics for different levels of (block-)fills given a re-
ordering and blocking for a matrix. The following command
computes statistics for block-fill levels 0 to 5:

$ sudo python3 artifact.py stats --matrix
— matrix_name --max_level 5

where matrix_name is taken from Tab. I}
2) Section [V} This section reports timings for the solution
of linear systems with block-iLDL". The command line

$ sudo python3 artifact.py replicate --matrix
— matrix_name

where matrix_name is taken from Tab. [I] solves a linear
system with the selected matrix, using the parameters given
in the same table.

3) Further experiments: To run culip-block-i1dlt
on other matrices, create a folder with the matrix’ name under
shared/ and include the following files (for descriptions see
block-ildlt.cc):

o the matrix as matrix.mtx

« the permutation vector as perm.mtx

« the vector of block starts blks.mtx

o the vector of pivot starts as pivs.mtx

and execute

$ sudo python3 artifact.py solve --matrix
— matrix_name

Optional arguments are: ——precision (0 for Single, 1
for Double), ——pivot_method (0 for static, 1 for BK,
2 for Rook) and --fill_level, --fill_factor,
—-—threshold.

E. Evaluation and expected result

1) Section [T} Given the input permutation and blocking,
block-fill in for the levels O to 5 are generated. The application
prints out the number of level sets as well as the number of
blocks in total plus their sizes. Note that matrices can become
so dense that they do not fit into the machine’s memory.

2) Section [V} culip-block-ildlt first computes a
preconditioner for the given matrix A and then generates an
approximate solution x to Ax = Al. After convergence,
the relative residual ||A1 — Az||/||A1|| is reported. Similarly,
the individual runtime for the preconditioner computation,
(optional) analysis and the iterative solve phase are reported
in milliseconds.


https://github.com/dthuerck/ia3-18-artifact
https://github.com/dthuerck/ia3-18-artifact
https://github.com/dthuerck/culip

APPENDIX B
ARTIFACT EVALUATION APPENDIX: “A BLOCK-ORIENTED,
PARALLEL AND COLLECTIVE APPROACH TO SPARSE
INDEFINITE PRECONDITIONING ON GPUS”

A. Abstract

The evaluation of our paper “A block-oriented, parallel
and collective approach to sparse indefinite precondition-
ing on GPUs” contains runtime results for culip-block-ildlt,
SYM_ILDL and MAGMA on a number of symmetric indefi-
nite matrices. This evaluation appendix describes the process
of replicating these results and adds details on their evaluation.

B. Replication of the papers’ results

1) culip-block-ildlt: We recommend to use our docker-
based artifact script as in the artifact description, Sec. [A-D]
above. For any matrix M in the test set (see first column of
Tab. [l), a single call to

$ sudo python3 artifact.py replicate --matrix M

is sufficient to run the preconditioner and SQMR solver as
described with the parameters used in our evaluation. To
replicate all results in the paper, the command has to be
executed for each of the included matrices.

After any changes to the Github repository or the uploaded
data, a

$ sudo python3 artifact.py clean

can be used to remove the Docker container, enabling a rebuild
from scratch.

2) SYM-ILDL: The authors of SYM-ILDL have released
their code under the permissive MIT license. Their latest
source can be found on Github (https://github.com/inutard/
matrix-factor). For our evaluation, we used the latest commit
#d4b862b from November 9, 2016. The package was then
executed by

$ ./1dl_driver —-filename=M.mtx

with the default options (according to the authors’ paper) -
only the fill factor (-£i11) was set to 4.0 or 8.0. Using
this call, a preconditioner is computed, a right hand side is
generated and the resulting system is solved with the in-
cluded implementation of SQMR. Preprocessing, factorization
and solving time is reported. As mentioned in the paper,
we excluded the preprocessing time for the purpose of our
evaluation.

3) MAGMA: We obtained MAGMA 2.4.0 from https://icl.
utk.edu/magma/software/index.html and built it on the same
PC as used in the evaluation. Similar to the other two packages,
we used a C++ program to read the input matrices and generate
the real solution vector as all-1s.

By calling magma_dsolverinfo_init with the solver
selection Magma_BICGSTABMERGE?2 and preconditioner se-
lection Magma_PARILU, we initialize the library. For the
preconditioner, we use 5 sweeps for computation and tried
fill levels 1 — 3.

C. Timing

For MAGMA and culip-block-ildlt, we used C++11’s
chrono (i.e. std: :chrono: :system_clock: :now())
API to measure the passed wall-clock time. SYM-ILDL uses
the POSIX clock () API to measure times.

D. Results analysis discussion

The runtime results for our Desktop PC (Intel i7 3930K, 64
GB RAM, Ubuntu 16.04, see Tab.[[)) were collected before the
creation of our Docker image. Due to the way Docker works,
we observe a small increase in processing times, especially
for CPU-heavy parts.

Due to the use of CUDA atomics in culip-block-ildlt,
runtimes between multiple runs of the application can slightly
vary. In our experiments, the amount of variation was negligi-
ble — thus, we reported the worst (i.e. highest runtime) of 10
runs. Further sources for software-independent variations of
the observed runtime are GPU overclocking, thermal boosting
and PCI-E performance. Since large parts of the preprocessing
is executed on the CPU and parallelized using NVIDIA’s
Thrust library, CPU performance can influence the runtime,
especially for smaller matrices.

The included SQMR solver only reports its quasi-residual
every fourth iteration in order to better overlap memory
transfers with compute. To determine a precise timing, we
tracked the real residual to determine the optimal number
of iterations for the iterative method. For badly-conditioned
matrices, there is often a large gap between quasi-residual and
real residual.

E. Summary

In the hopes that our code can be of use to the community
as a trustworthy piece of software, we release all code and
data necessary for replicating the evaluation to the public. The
provided Dockerfile and Python3 script allows an easy setup
and replication; the evaluating party only needs a correctly set
up (nvidia-) docker installation.
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