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Abstract—Given enough parallel compute units, the processing
time for sparse (in-)complete factorization is determined by the
number of level sets found in the pattern of the matrix. For posi-
tive definite or diagonal dominant matrices, the iterative Jacobi-
method presents itself as a scalable alternative on massively-
parallel systems. In this paper, we present modifications to the
Jacobi algorithm, extending its applicability to a wider class of
matrices. Our approach cuts the matrix into blocks to allow
register-based pivoting in batched CUDA factorization kernels
and, for the first time on GPUs, also flexible permutations on
the block level in an a posteriori threshold pivoting scheme.
Experiments show our batched kernels to be on par with partially
pivoted approaches and that the resulting sparse factorization
compares favorably in quality and speed with their traditionally
scheduled counterparts.

I. INTRODUCTION

We consider the problem of solving real linear systems of
equations of the form Ax = b, A € R™*™, where A is sparse.
We consider heterogeneous computer systems which we define
as compute systems with a CPU (denoted as host) and at
least one massively-parallel accelerator card (device). While
our approach is of general nature, we only consider NVIDIA’s
CUDA-capable GPUs here.

Especially in parallel computing, iterative (Krylov) solvers
such as GMRES |[1]] are considered a viable alternative to di-
rect methods. Their main computational primitive is the sparse
matrix-dense vector multiplication (SpMV), often responsible
for over 99 % of the execution time. Practical experience
shows that the distribution of eigenvalues often governs the
convergence; ideally, the eigenvalues are clustered in a small
interval; otherwise, these matrices suffer from stagnation of
the residual after a few iterations. In order to solve these
systems, we employ a preconditioner M such that AM~!
resp. M ' A has a more amenable eigenvalue distribution and
linear systems with M are computationally efficient to solve.

While there are many types of preconditioners available,
the lack of problem-specific preconditioners naturally leads
to ’black box’-types of preconditioners such as incomplete
factorizations. As their name suggests, incomplete factoriza-
tions of sparse matrices are factorizations (e.g. LU - type)
where some numerical nonzero entries have been removed
or dropped. These can be generated by either traditional
factorization packages and applying filters to the generated
entries; alternatively, Chow and Patel [2] have presented a
massively-parallel scheme that offers tremendous speedups by
solving a fixed-point equation by an iterative Jacobi method;

however it is only applicable to matrices that are close to
diagonal dominant. For tough matrices, they usually fail.

When dealing with such matrices, even direct methods re-
quire pivoting, i.e. changing the matrix’ structure to minimize
numerical errors. As pivoting changes the order of compu-
tations on-the-fly, this especially hurts parallel approaches in
two ways: (a) after a pivoting operation, the symbolic analysis
needs to be re-evaluated, leading to some sequential, symbolic
operations and a stall in numerical computation; (b) even
inside dense blocks, this leads to irregular memory accesses
— in the sense that these accesses cannot be planned ahead,
preventing the use of highly-tuned, static kernels. For these
reasons, pivoting has rarely been considered for precondition-
ers on parallel systems. Yet, pivoting can be crucial for the
success of a factorization.

In this paper, we propose to use a-priori blocking and
present a data structure and algorithms to enable global
pivoting on matrices in parallel, enabling the use of such
Jacobi methods even on tough matrices. Our contributions are
as follows:

1) We present a blocking-based data structure that allows
parallel matrix permutations on the block level, enabling
pivoting over the whole matrix.

2) To maintain accuracy inside these blocks, we present
CUDA-kernels that, for the first time, allow irregular
full and symmetric pivoting with regular, static memory
accesses.

3) We present a modification for the Jacobi factorization
scheme that enables convergence even for indefinite,
non-diagonal dominant matrices.

II. BACKGROUND

This section gives a short introduction into the computation
of numerical factorizations and lists notable related works.

A. Parallel (In)complete factorizations

Numerical factorizations decompose a sparse, real input
matrix A into A = LDU with diagonal D in the unsymmetric
case; A = LLT in the symmetric positiove definite case; or
A = LDLT with a 1 x 1 and 2 x 2-block diagonal D in
the symmetric indefinite case (this work only considers the
latter). In order to improve the condition number of the input
matrix, minimize the fill-in produced during the factorization
and select 2 x 2-pivots ahead of time, a preprocessing pipeline
to scale, permute and match [3] A is usually employed; the



factorization then works on the matrix PrSrAScPo with
permutation matrices P and diagonal scaling matrices S. In
the case of an incomplete factorization, dropping entries by
their location or magnitude [4]], [S]] introduces an error matrix
E # 0 such that A = LDLT + E. Ideally, the norm of E
should be kept small. More details on the effects of dropping
are discussed in Saad [6].

Departing from ’classic’ methods that process the matrix
along its nonzero structure, Chow and Patel [2]] proposed to use
a fixed-point iteration scheme to approximate an incomplete
LU -factorization. Their main insight is that for an incomplete
preconditioner A ~ LU and a predefined sparsity pattern .S,
it holds that

Ay = (LU )45, (1,5) € S (D

which leads to the following equations:

7—1 1—1
Li; = U Ay — ZLikUkj)a Uij = (Aij — ZLikUkj>-
k=1 k=1
2

These Equations can then be solved in a fixed-point manner,
always taking the initial matrix A on the right hand side as
input and consecutively updating L and U - each iteration is
called a sweep.

B. Related work

As discussed, allowing pivoting causes sequential symbolic
operations and irregular memory accesses. Reconciliating piv-
oting and parallel computations has often been discussed in the
literature concerning direct methods (i.e. full factorizations) ,
but only rarely in conjunction with incomplete factorizations.

Pivoting: We find that the scope and amount of pivoting
allowed in a package can be represented on a quasi-continuous
scale: The simplest approaches processes the factorization in
the order as supplied by the input matrix [7]]; whenever a small
pivot is encountered, they usually add a small numerical shift
to it and rely on iterative refinement in the Krylov solver later
on. For these cases, the mentioned preprocessing and scaling
of the input matrix is crucial. A step more towards global
pivoting is given in out previous work [8[]: When the matrix
is cut into dense blocks a priori, then pivoting operations
inside these blocks come without the burden of requiring a
data structure modification. Increasing the size of these blocks
more and more approximates full pivoting; frontal matrices as
in PARDISO [9], [10] can reach sizes up to 1024 x 1024.
Lastly, the extreme case allows unlimited, arbitrary pivoting
as in Greif et al. [11]. With this work, we add another option
that is located somewhere around the center of this axis:
pivoting inside modestly-sized blocks, but we also permit the
permutation of the blocks themselves.

Blocking: Any successful operation on such blocks re-
quires heuristics to initially find dense blocks in the sparse
matrix without wasting too much storage saving numerical
zeros. Mostly, we distinguish between two methods: a priori
[8]], [12] and dictated by amalgamating nodes of the elimina-
tion tree [[13[]. While left-looking blocked approaches permit

to initially set up these block structures, multifrontal packages
with a right-looking computation order often pack/unpack
scalar rows and columns of the matrix into so-called frontal
matrices, which are, by design, almost fully dense. Apart
from minimizing the symbolic computations, using blocks also
permits us to exploit dense BLAS and LAPACK kernels on
the blocks. On the CPU, such cache-friendly kernels even
offset the additional work of increasing the size of blocks
progressively during the computation as done in Bollhoefer
[7]. Other than these traditional methods, G6tz and Anzt [14]
have presented the first deep learning based approach to detect
dense blocks near a matrix’ diagonal.

Farallelization: Sparse linear algebra, due to its con-
tent of symbolic operations and irregular memory accesses,
presents a challenge for the effective use of SIMD-based,
throughput-oriented accelerator cards. In the case of factor-
izations, parallel performance rests on two pillars: (1) using
dense, parallel kernels on blocks and (2) detecting independent
operations due to the dill structure of the matrix. The latter
leads to multilevel-types of factorizations [15] that process
rows resp. columns of matrix that are independent, at the
same time. Those sets are discovered by a breadth-first search
on the matrix’ adjacency graph. Since the latter changes
when permuting the matrix during preprocessing, Naumov
investigated [[16] graph coloring as a means to expose more
parallelism; we [8] studied the effects of such reordering. In
case of direct factorizations or significant expected fill-in, the
computation is guided by the matrix’ elimination tree [17],
[18]. Recently, Hogg has also explored the use of DAGs [19]
for scheduling. Lastly, we note the efforts made to include
more and more special abilities and hardware of GPUs, such as
NVIDIA’s Tensor Cores for fast processing of half precision;
mixed-precision approaches [20], [21] could help to save
computation where lower precision is sufficient.

Implementing the fixed point equations [2] from above leads
to an embarassingly parallel method that is ideally suited for
the GPU. This method, often referred as ’Jacobi style’ (not
to be confused with diagonal preconditioning!) is used in
subsequent works as a building block for e.g. triangular solves.
ParILUT, an iterative threshold-dropping based Jacobi method
[22], [23], enables the generation of fill-in by alternating
between a step of matrix-matrix multiplication to determine
new candidate locations for explicit zero elements and Jacobi
iterations to determine their value. All these methods’ draw-
back is their applicability, a high degree of diagonal dominance
seems to be a condition for convergence. The methods we
present in this paper are an attempt at creating a remedy
to this problem: (a) Using blocks naturally opens up many
different locations for fill-in and (b) full pivoting improves
the dominance of diagonal entries during computation.

III. Two-LEVEL PIVOTING

Our factorization code works as follows: First, we overlay
the input matrix A with a regular grid of a user-defined size
and extract all nonzero elements which are then combined in
dense blocks. We then set up data structures for organizing



these blocks (see Sec. [V). This block structure is fixed for
the remainder of the factorization, i.e. blocks are neither
created nor deleted; however, larger blocks are notably better at
capturing possible fill-in on the sparse level. Thus, the ordering
of the matrix together with the size of the regular grid leads
to a trade-off between more flexible fill-in and inefficiencies
caused by empty blocks.

While factorizing the matrix, we perform all operations
on these blocks, including dense factorization of blocks on
the block-diagonal. These batched factorizations use special
kernels (see Sec. [[V). Furthermore, we also permit to postpone
whole blocks to the end of the matrix and factor them later.
In sum, we offer two levels of pivoting: inner pivoting inside
of dense blocks and outer pivoting.

Our code splits the calling-the-actual-kernels from the anal-
ysis and planning phase. We refer to the symbolic part as the
frontend on the host while the set of kernels makes up the
backend on the device.

IV. BACKEND

We start by discussing inner pivoting in the backend.
This mainly covers the kernels performing a dense numerical
factorization of a block. We have presented [8] GPU kernels
for LDLT factorizations, which similarly process one block
per warp and heavily make use of collective operations. Our
previous code, however, stores the block in shared memory
during factorization, which enables dynamic accesses and
therefore allows straightforward pivoting. Recent GPU gen-
erations, especially of the Volta and Turing generation, offer
an register file of 256 kB per streaming multiprocessor; shared
memory is limited to 96 kB for the same hardware unit.
Registers greatly exceed shared memory in bandwidth; the
downside, however, is that dynamic accesses to registers get
translated to local memory accesses — which are just cached,
slow global memory accesses. A task like pivoting with its
irregular (i.e. dynamic at runtime) access pattern is not a
natural fit to register-based kernels.

Full pivoting in registers: Previously, Anzt et al. [24]]
reported a way to support partial pivoting in register-based
kernels: they assign one row each to a thread in the warp;
with shuffle-instructions, these threads then swap values with
destinations determined at runtime. In the LDU-case, that
constitutes partial (row-) pivoting.

Limiting a kernel to either row interchanges or column
interchanges is straightforward. The situation, however, is
more complicated when handling both. A possible alternative
traverses the whole matrix after each factorization step and
applies masks during the rank-1 downdate. While this elim-
inates all dynamic accesses, the size of the generated code
for k£ > 16 negatively affects the instruction cache and lets
performance drop below a baseline shared memory version.
As a remedy, we propose to allow one dynamic access via
binary search per factorization step and amortize this through
two measures: (1) explicit permutation to the current column
avoids repeated iteration over all columns and (2) usage of
masks to fuse rank-1 update, row scaling and pivot update

into one step. Essentially, we fuse the last two steps of
a classical right-looking factorization into one fused Schur-
complement. The resulting code is presented in Alg. (1] In the
interest of notational brevity, we use ’telling’ pseudo-function
names, e.g. swap_with_1ix, for collective primitives that are
straightforward to implement with shuffle instructions. Similar
to a CUDA kernel, the code snippet is written for one thread
with id t_ix in its local (sub-)warp. It accesses the j-th
element of its row by reg[j] — iff the index j is static.
Otherwise, we mark it as a costly dynamic access — requiring
a binary search on a runtime index to access the register. An
important part of Anzt’ kernel is handling the row interchanges
implicitly - rows are never actually interchanged, each thread
only stores the position of its row in the matrix. The actual
permutation is postponed to when the factorized block is
written back to global memory, where dynamic accesses are
cheaper.

For full LDU pivoting, we always select the entry of
maximum magnitude in the Schur complement. Initially, each
thread iterates over its row to determine the maximum (line
2); a warp reduction then determines the first pivot element
— (piv_ix_r, piv_ix_c) (line 6). During the whole factoriza-
tion, thread 7 keeps a record of which of the original rows
resp. columns are permuted to position ¢ in (t_pivot_r,
t_pivot_c); these values are exchanged accordingly (lines
9, 10). Since we handle column permutations explicitly, the
only necessary dynamic access occurs in line 14: each thread
copies the value from the column selected as the next pivot
column. These values are scaled and written into the current
column at step s (line 20). Doing the same with the pivot
column would warrant another dynamic access; instead, we
defer this part of the permutation to line 34 in the rank-1 down-
date: This expression combines copying entries from column
s to the pivot column and executing the rank-1 downdate for
other columns into one expression via operand semantics. We
replace all conditions by explicit multiplication with masks to
avoid warp divergence. While traversing the columns in the
downdate, we also select the maximum magnitude entry per
row; by putting all these steps in one loop, we incentivize the
compiler to make use of ILP inside the loop. Since registers
cannot be manually addressed in CUDA code, we use Cog
[25] as code generator to explicitly unroll all loops and avoid
any dynamic arrays accesses.

The symmetric (LL") case generally mirrors the method
in Alg. [T row and column permutation is then the same.
The LDLT case with its 2 x 2-pivots is more complex and
generally requires 2 dynamic accesses, but otherwise follows
the same ideas. For details, we refer to our code.

We evaluate the resulting kernels in Fig. [I] on a
NVIDIA Titan RTX with 24 GB memory and CUDA
10.1 on Ubuntu 18.04 with driver 418.39. We com-
pare the register-based (GPU—Reg) with the shared mem-
ory version from [8] (GPU—SMem) as baseline. Both
cuBLAS (cublasSgetrfBatched) and MAGMA [26]
(magma_sgetrf_batched_smallsqg shfl) also offer a
batched LU-kernel with partial pivoting; the latter being the
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Figure 1: Runtimes and GFLOPs for pivoting kernels of different factorization methods. All runs use a batch size of 10,000
matrices that are either unsymmetric (LU), symmetric positive definite (LL ") or symmetric indefinite (LDL"). Since the
double-precision kernels also contain single-precision operations, we count 1 DP-Flop as 2 SP-Flops.

implementation of Anzt et al. [24]. While our code uses
CUDA’s unified memory interface, we manually prefetched
all data and used the profiler to make sure no page faults
affect the benchmark results. Our METAPACK backends offer
static and full pivoting for all three factorizations as well as a
partial LDU -kernel for the sake of comparison. We execute all
kernels on random block matrices of sizes 4 x 4,8 x 8,16 x 16
and 32 x 32 with a batch size of 10,000. Additionally, we
use nvprof to get the FLOP-count of each kernel. While the
results for our kernels and MAGMA are on par with [24],
we exclude cuBLAS from the GFLOPS plot as the profiler
returned results that were beyond the theoretical maximum
of the TITAN RTX (16.31 TFLOPS FP32, 0.509 TFLOPS
FP64). All timings include load and store operations from
and to global memory as well as fetching the frontends’ job
descriptions. Our LDU-kernels achieve 1,745/1,407/1,402
GFLOPS for static/partial/full pivoting and single precision
using the register-based method from above. MAGMA's partial
LDU kernel achieves 898 GFLOPS. Runtimes for the batch
were 0.28/0.39/0.60 ms for ours and 1.41 ms for MAGMA.
The full pivoting kernel, despite the much higher FLOP count
and symbolic intensity, is only 50% slower than the partial
pivoting case; this confirms that Alg. [T] allows the GPU to
leverage mainly ILP to compensate for many of the additional
FLOPS. In general, the register-based backend beats the shared
memory-based kernels; full pivoting in registers is often as fast

as static pivoting in shared memory.

A notable exception is the case of LDL": To maintain
numerical accuracy, static pivoting selects 2 x 2 pivots in
roughly 40% of steps; since we use Givens transformations
to solve the resulting 2 x 2 systems, this especially affects
larger block sizes. Hence, different block sizes, operating on
different random matrices, cannot be compared - their ratio of
2 x 2 pivoting is just too different. The full pivoting variant
only requires 2 X 2 pivots 10% of the time on average; thus, it
is faster than the static case. here, shared memory variants are
generally faster since the high register pressure in the register-
based variants cause many accesses to go to local memory.

For double precision, the register-based kernels suffer from
high register pressure as well and are also restricted by the
FP64-hardware on the TITAN RTX. As a consequence, shared
memory kernels are preferable in this situation. Note that,
since the double precision kernels also include single precision
operations, we regard 1 FP64 operation as 2 FP32 operations
in Fig. [I] Notably, despite the slower runtime, the register-
based kernels still manage to come close to approx. 60% of
the theoretical FP64 performance.

V. FRONTEND

For very tough matrices where inner pivoting still leads to
small pivots, we propose to allow outer pivoting, i.e. change
the structure of the matrix by pushing blocks from the block



Algorithm 1 Full pivoting kernel for an n x n - sized LDU
factorization (see [[V| for definitions of variables and symbols
used). This code snippet assumes that t_ix is the current
thread’s index into the (sub-) warp.

processed_r = False
[t_piv_val, t_piv_ix_c] = max(abs(reg[0:(n — 1)1))
[t_pivot_r, t_pivot_c, t_piv_ix_r] = [t_ix, t_ix,

t_ix]
for s =0 : (n—1)
% find maximum value in Schur complement as next
pivot

[piv_val, piv_ix_r, piv_ix_c] = reduce_with_ix(
t_piv_val, t_piv_ix_r, t_piv_ix_c)

% record row and column permutation

swap_threads(t_pivot_r, s, piv_ix_r)

swap_threads(t_pivot_c, s, piv_ix_c)

% fetch values in columns s and the pivot

cur_col = reg[s]
piv_col = dynamic(reg, s)
if(toix == piv_ix__r)

processed_r = True

% explicitly permute pivot column to position s
reg[s] = piv_col / (processed_r ? 1.0 : piv_val)

% fused rank—1 downdate: includes row scale,
column swap and pivot search

t_piv_val = 0.0

t_piv_ix = s

% multO: scales the pivot row
multd = 1.0 / ((t_ix == piv_ix_r) ? piv_val :

1.0)
for j in (s + 1) : (n— 1)
src = (j == piv_ix_c) ? cur_col : regl[j]

o_val = shfl(src, piv_ix_r) / piv_val
update = o_val * piv_val * reg[s]

% swtch between update and relacement
reg[j] = multO@ * src — (!processed_r ? update
: 0.0)

% prepare next pivot selection
if abs(reg[s]) > abs(t_piv_val)
t_piv_val = reg[s]
t_piv_ix = j

diagonal and their respective rows and columns to the end of
the matrix. The subsequent symbolic operations are, depending
on the matrix’ nonzero structure, expensive. In this section,
we propose a simple and effective semi-implicit scheme for
block-pivoting in the frontend. We first give details on the
data structure involved and then outline the operations that
are required to permute a block and its row resp. column to
the end of the matrix.

Frontend data structure: After initially locating the
nonzero elements in the input matrix A, we create the follow-
ing management data structure: Similar to the CSR and CSC

formats for conventional sparse matrices, we use a blocked
dual CSR/CSC format. For each block row, we list all blocks
as array R; with index pairs (¢, ptr) containing the original
block column as well as a pointer to the dense block in
memory. The same is kept for all block columns as lists Cj;
in case of symmetric matrices, we only keep the row-based
structure. An example, containing only the row index pairs, is
given in Fig. [2a] (the green arrows represent Co, C3 and the
black arrows Rs, R3). In addition, we save the index of the
block on the diagonal in R;/C; in arrays Ri, CA‘Z for convenient
access to the lower and upper triangular part of the block
matrix. Assuming we chose a large enough block size k x k
and a suitable reordering during preprocessing, the nonzero
structure (i.e. the location of nonzero blocks inside the matrix),
is significantly smaller than that of the input matrix A.

A. Pivoting

With this structure in mind, we turn to the implementation
of outer pivoting. In order to create an efficient, parallel
pivoting approach, we restrict ourselves to “push-back’ types
of permutations, i.e. each operation can pivot a set of rows and
columns to the end of the matrix; yet the relative order among
them stays constant. Secondly, we only perform symmetric
permutations which do not affect the blocks on the block
diagonal. This scheme leads to a preconditioner approach that
is often also classified as multilevel [27], [28]] (not to be
confused with the level scheduling for parallelization), an a
posteriori pivoting scheme. During the factorization, blocks
with small pivots are recorded and marked for push back; this,
however, requires additional storage as such blocks must be
rolled back before the pivoting operation. Note that this does
not, in any way, result in a loss of generality - we can still
generate arbitrary (symmetric) permutations, just at the price
of more steps. In our implementation, we maintain 3 arrays:

¢ P; which saves the current diagonal block on position ¢,
i.e. the first row and column of the matrix,

e itsinverse Pi_l, pointing to the current position of (initial)
diagonal block i and

o X, which store a diagonal block’s level.

These levels in X; are an upper bound to levels resulting from
level scheduling based preconditioners. All pivots pushed back
in one level will stay together in that level, so no additional
dependency analysis is necessary.

A ’push-back’ operation executes the following steps:

1) Increment the X entries for diagonal blocks to be
permuted,
2) execute a stable sort on the diagonal block ids by their
respective level; this results in the updated array for P.
3) Invert P into P~1.
4) Sort all index pairs (i,ptr) in R,C by comparing
diagonal blocks by their entries in P~ 1.
5) Lastly, update arrays R, C.
An example of a 5 x 5 matrix pushing diagonal blocks 2
and 3 is given in Fig. 2] Following the steps above, we ask
the reader to draw his attention to the following points: (a)
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Figure 2: Example of a ’push-back’ type pivoting operation:
we permute rows and columns 2, 3 symmetrically to the rear
of the matrix and sort the block references according to their
new value in piv_position (see Sec. [V). Note: only the
index pairs for R. are shown.

the most expensive step (4.) operates on all diagonal blocks
independently, parallelized over diagonal blocks; (b) no actual
permutation of diagonal blocks in memory is performed, we
solely operate on indexes. After a permutation, the index pairs
do not represent valid column resp. row coordinates any more.
Instead, the frontend always needs to map those via P~!;
in this sense, the index pairs are always sorted. Although
indirecting through these indices seems like a hassle, it can
be a benefit for the symmetric case: Consider the two blocks
marked with yellow stars in Fig. 2b} these have switched their
sides of the block-diagonal, i.e. a block from LT moved into
L and vice versa. Since we do not store the blocks of L, LT
twice in memory, such blocks need to transparently transposed
in the backend. Due to our pivoting scheme, we already imply
this marker: if we encounter an index pair in L whose first
component is larger that the initial column of this diagonal
blocks’ diagonal block, the block should be transposed (and
vice versa for LT).

After such pivoting operations, the job schedules for sub-
sequent levels need to be regenerated. To avoid additional
latency, scheduling higher levels can be executed in a separate
host thread while the backend starts working on the first, newly
scheduled levels.

VI. A MODIFIED JACOBI-LDLT ALGORITHM

The fixed point equations of Eq. 2] are well suited for
(massively-) parallel systems: each equation is indepedent
from others, enabling the exploitation of coarse grained paral-
lelism in the hardware. A sufficient condition for convergence
of the fixed point iteration is diagonal dominance of the
matrix A; for symmetric indefinite matrices, that is rarely
the case. Pivoting operations during numerical factorizations
are designed to move large elements to the matrix’ diagonal.
Therefore, we hypothesize that embedding pivoting in Jacobi
(fixed-point) factorization should help with convergence. To
that end, we adapt Eq. [2| for the LDLT case and track the
local permutations from inner pivoting in Alg. 2} Two points

> pei L' (i, k)D (K)L (i, k) T

6 [L"(i,%), D" (i), q] + LDL(B,¢||A||1)

7 P"(i) < p/(i)(q)

8 end for

9 for (,j) where j < i do
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i L0, KD (KL (G k)T
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12: end for

13: €<+ €d

14: end for

are the deciding factors for convergence even in the symmetric
indefinite case: (1) local permutations must be updated in sync
with L', D', i.e. whenever accessing L', D’, we also have to
access p’ to adapt the initial guess to the current iterate’s
permutation; (2) due to the lack of diagonal dominance, we
frequently encountered small pivots, leading to large values in
the off-diagonal blocks and, in consequence, divergence. As
a remedy, we found aggressive pivot perturbations especially
helpful: we set the € in Alg. [2] to large values such as 0.1
or 0.01. This usually stabilizes the iterates, such that it can
be relaxed after each sweep by multiplication with 6 < 1.
In out experiments, we use ¢ = 0.1, = 0.95. Going one
level further, outer pivoting can be included as well: after the
first sweep, we detect and push problematic diagonal blocks
back. Then, all block accesses in Alg. 2] need to go through
P~1. Lastly, we remark the following: When processing
positive definite, but not diagonal dominant matrices, some
diagonal blocks turn indefinite during the factorization; thus,
the LDL " -variant also covers that case.

VII. EVALUATION

We implemented the modified Jacobi algorithm and the
pivoting data structures as part of our experimental linear
algebra code METAPACK. METAPACK is focused on re-
searching new algorithms and parallelization concepts, stress-
ing adaptivity and modularity over performance. Since this
paper is mostly concerned with enabling the use of Jacobi-
factorizations (in comparison with the conventional level
scheduling parallelization), we leave a performant implemen-
tation to future work. Despite that fact, Tab. E] gives some
timings for level scheduling factorizations. All experiments
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Figure 3: Plots for ablation experiments.

Jacobi(32, 0.1) | Multilevel(32, 0.1)

Matrix B | R | B | R | t

gpband -6 -8 -6 | -8 12s
mario001 -1 -1 -1 -1 04 s
bab5 -4 -1 -4 | -1 0.6 s
c-72 -3 -1 3] -1 09 s
Si10H16 -4 -3 41 -3 1.2's
boydl -5 -4 S| 4 09 s
Lin -4 -3 -4 -3 03s
map06 -4 -2 4 | 2 19 s
bley_xI1 -3 -2 3 -2 43 s
c-big -4 -2 4 | 2 23 s
co-100 -3 -2 3 -2 24 s
bab3 -3 -2 -4 -2 83 s
G3_circuit -4 -3 41 -3 09 s
BenElechil -5 -5 S5 -6 09 s
af_shell7 -5 -4 -5 -4 1.2s

Table I: Using the computed preconditioner to solve matrices
using 4 runs of GMRES(25). B refers to the backward error
log([[b — Az[|oc /(| A]lsc||[[oc + [b]|o0)); R is the unprecon-
ditioned relative residual log(||b — Ax||2/||b||2) - t marks the
computation time for the multilevel preconditioner.

were executed on the same machine as those in Sec. [V] with
8 Jacobi sweeps.

We evaluate our method on a set of 15 matrices from
our earlier work in that paper’s order; all matrices are
symmetric indefinite and sparse. Every metric is permuted
and scaled with MC64 and then overlapped with a regular
grid. Since the original Jacobi method is sensitive to diagonal
dominance, Fig. |3_3| lists the minima, average and maxima of

the quantity || A;[|1 — >2;; [|4ij[1, a measure of the degree
of diagonal dominance, over block rows. We notice a clear
separation: while matrices 1, 5, 6, 7, 13, 14, and 15 are close
to diagonal dominance, the other matrices are far from it.
Applying a regular Jacobi method to the latter leads to strong
divergence. No fill-in is added nto the initial block structure
on input matrices.

In Fig. [3b] - Bdl we present ablation studies for (b) the
threshold e, (c) the block size k as well as the the effectiveness
of both inner and outer pivoting in (d). In all cases, we
use the reconstruction error ||[LDLT — Al|so/||A||se; in our
experience, this error behaves similar to the backward error
when solving a linear system with the computed factorization
as preconditioner. Results for the backwards error and relative
residual in that case are given in Tab. [l he Jacobi results
were generated with the best setting extracted from Fig.
[Bb] per matrix. In all experiments, our reference is a level
scheduling factorization (same backend, but same frontend)
with otherwise the same parameters.

Additionally, we also used Magma’s ParILU and ParILUT
[26] and applied it to all systems as a reference. However, we
did not get a single success - no system ever came beyond a
residual of le-1; most did not finish the computation of the
preconditioner. This lines up with our earlier, independently
produced results [§]. In the interest of a fair comparison, we
implemented a scalar variant of Jacobi-LDL', see Fig.
with k = 1.

In Fig. Bb] we notice the importance of a strong ¢ for non-
diagonal dominant matrices: small thresholds such as 0.001 or
0.0001 often lead to reconstruction errors magnitudes over the
reference. On the contrary. a large threshold seems to contain



numeric artifacts and help with convergence. For almost all
matrices, we can find a parameter setting such that the Jacobi
preconditioner matches or outperforms the level schedules one
in its error. Furthermore, such a high ¢ also dampens the
sensitivity with regard to block size k: As Fig. reports,
the results of most block sizes over k& = 4 show only minor
differences. The scalar Jacobi algorithm, however, diverges
strongly from that: its error is mostly more than two orders
of magnitude higher, since it is restricted to its initial nonzero
structure. Especially when dealing with indefinite matrices,
capturing relevant fill-in is crucial.

During most of the Jacobi sweeps, the high € keeps all pivots
in such a range that inner pivoting and, surprisingly, outer
pivoting, do not play a striking role in the final error of the
computation (see Fig. [3d). Beyond the Jacobi method, inner
pivoting can still make or break a factorization in traditional
schedules.

Lastly, we investigated the optimal number of sweeps and
estimated the performance benefits of using the Jacobi method.
As visible in Fig. [3f] the factorization phase can be acceler-
ated in this way; integrated implementations of frontend and
backend could offer even more speedup. Fig. [3e|resembles the
curves in Chow and Patel’s [2] original paper: saturation often
accurs after the fifth sweep — for tough matrices.

VIII. CONCLUSION AND FUTURE WORK

We presented blocking and a two-level pivoting scheme as
an approach to use massively-parallel Jacobi-schemes for pre-
conditioning even for numerically tough matrices. We found
that aggressive pivot thresholding presents a useful remedy to
a lack of diagonal dominance. Our results show that paired
with the right ingredients, these methods can close the gap
to traditional preconditioners. In future work, we would like
to try the same methods on the triangular solves that are
critical for accelerating iterative solvers and study the effects
of preprocessings such as reorderings and scaling on the
method. Furthermore, we would like to experiment with the
extension to exact factorizations. Our code will be released on
the author’s Githulﬂ page.
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