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Abstract—The last two decades have seen continued
exponential performance increases in HPC systems, well after
the predicted end of Moore’s Law for CPUs, largely due
to the widespread adoption of throughput-oriented compute
accelerators such as GPUs. When faced with irregular
yet throughput-oriented applications, their simple, grid-based
computing model turns into a serious limitation. Instead of
repeatedly tackling the issues of irregularity on the application
layer, we argue that a generalization of the CUDA model to
irregular grids can be supported through minor modifications
to already established throughput-oriented architectures. To that
end, we propose a unifying approach that combines techniques
from both SIMD and MIMD approaches, but adheres to the
SIMT principles – based on an unlikely ally: a wide-SIMD
vector architecture. We extend CUDA’s familiar programming
model and implement SIMT-inspired strategies for dealing with
data and control flow irregularities. Our approach requires only
minimal hardware changes and an additional compiler phase.
Using a model-based software simulation, we demonstrate that
the proposed system can be a first step towards native support
for irregularity on throughput-oriented processors while greatly
simplifying the development of irregular applications.

I. INTRODUCTION

The last decade has seen a massive increase in raw compute
power due to the inclusion of GPUs in HPC systems. GPUs
augment the previously dominant multi-core CPU setups by
throughput oriented computing (TOC). Garland and Kirk [11]
mention three important design principles for such systems:
an abundance of rather simple processing units, SIMD-style
execution and hardware multithreading. In this spirit, the
scheduling hardware on GPUs is kept simple in favor of
more compute, leading them to perform poorly in case of
control flow irregularity (e.g. branch divergence, fine-grained
synchronization) or data irregularity (e.g. differing resource
requirements between work items). Modern multi-core CPUs,
on the other hand, are optimized for latency and can use
multithreading (SMT) to swap between executing applications.
CPU cores operate independently and request resources as
needed. Even though the concepts of latency and throughput-
oriented architectures are diametrical opposites, researchers
have tried to transplant features between them to speed up the
execution of programs in their native programming models.

Classical domains where TOC proves effective are
now facing the increasing use of irregular applications:
sparse matrices, graph neural networks and sum-product
networks frequently appear in e.g. the machine learning
community. In order to extend the success and simplicity
of CUDA’s programming model to these applications, we

propose software and hardware modifications that are quickly
realizable and add native support for data and control flow
irregularity.

Our contributions are as follows:
• We extend CUDA’s PTX ISA to support an irregular

compute model via an mapping to metadata registers in
wide-SIMD processors (handling data irregularity).

• We describe a method to use register renaming as a
tool for SMT-like processing on a simple vector core,
avoiding costly context switches (handling control flow
irregularity).

• Lastly, we integrate both ideas into a modified wise-
SIMD architecture and validate the effectiveness of our
ideas using a model-based software simulation.

This paper focuses on ideas and their integration; realizing
a full system is an objective for future work. We back our
claims and support the viability of our ideas using a model-
based simulation (cf. below).

II. RELATED WORK

The architectural continuum between throughput-oriented
SIMT/SIMD designs and latency-based (e.g. SMT) designs
has been explored to great depths. Multiple extensions to
SIMT designs have been proposed: Scalar co-processors
for GPU cores [3], [19], [22] that avoid repeated scalar
computations; central schedulers share the GPU between host
threads [14] or dynamic re-grouping of threads from a warp
or block into convergent subgroups [9], [10]. Similar to
SMT context switches, Frey et al. [8] propose a model for
oversubscription of tasks to SIMT cores and a method for
faster context switches using the cores’ L1 cache. Similarly,
work-stealing between warps has been explored [13].

On the other end of the spectrum, multiple works have
investigated layering a SIMT scheduler on top of arrays of
in-order CPU cores [2]. These arrays switch between MIMD
mode (each processor operates independently) and SIMT
mode (control logic is shared by all processors) to save power.
Subsequent works extend this idea into a form of “hardware
auto-vectorization” [5], [20] of scalar code. In order to group
similar instructions on cores of the array, expensive crossbars
are required.

Liquid SIMD [4] and Vapour SIMD [17] on the software
side and ARM’s SVE hardware extensions [1] improve SIMD
systems for irregular applications: they offer a convenient way
to set the SIMD vector length at runtime, adapting to tasks
with varying resource requirements.



III. PROGRAMMING MODEL

We now describe our proposed generalization of
CUDA’s grid-based compute model to irregular workloads.
Traditionally, CUDA kernels are parameterized over a grid
of blocks, e.g.

kernel<<<m, n>>>(...);

which launches m blocks of n threads. Each block is scheduled
onto a streaming multiprocessor (SM) which executes warps
of 32 threads. All threads within a warp operate in lockstep1

and branches or conditionals are implemented by predication
In recent GPU architectures, all threads in a warp share access
to the SM’s register file and communicate through it with low
latency. Blocks of variable sizes mi have to be emulated by
setting the block size to m = max{mi}i and masking out
threads in each block at runtime.

We build our proposed programming model with this issue
in mind: First, we get rid of the block abstraction and directly
expose warps to users. In order to handle data irregularity, we
make the individual warps’ sizes a runtime parameter. Instead
of passing parameters m, n to the kernel, this requires passing
an explicit list of warp sizes:

const int w_list[] = {4, 11, 3, 2, 8, 3};
kernel<<<m, w_list>>>(...);

As on GPUs, warps are assigned statically to SMs at
initialization. Implementing kernels follows the same principle
as for warp-centric [12] models: all threads in a warp execute
in a bulk-synchronous manner and threads communicate
through shuffle instructions. To distinguish code for our model
from traditional CUDA code, we use the keywords tid for a
thread’s index in a warp and wid, ntids for a warp’s index
and size, respectively. As a poster child example, we use the
SpMV-kernel in Fig. 1 (left), where each warp handles one
row of a sparse CSR matrix (arrays csr_row, csr_col,
csr_val). Therein, each thread handles one nonzero entry
of the row and the results are accumulated by a warp-wide
logarithmic reduction (lines 8 through 12). This simple kernel
exhibits both data and light control flow irregularity: First,
each warp uses a varying amount of threads and thus the share
of the SM’s register file depends on a runtime parameter where
the classical CUDA execution model requires the register
count at compiler time. Second, the number of reduction steps
depends on the warp size, leading to different execution paths.

IV. IMPLEMENTATION

A little unconventional, we propose executing programs
in the programming model from above on traditional
SIMD hardware. Specifically, we consider wide-SIMD (i.e.
vector) hardware due to their ability to set a vector size
at runtime. The proposed system introduces additions to
CUDA’s C-to-PTX compiler and modifications to vector
instruction buffers and register renaming units in hardware.

1With thread-independent scheduling as in the Pascal microarchitecture, the
lockstep model has been somewhat relaxed.

Such buffers and renaming units are frequently found in
SIMD microarchitectures (e.g. Intel CPUs with AVX). The
fundamental ideas of our system are to translate SIMT code
(with SIMD-friendly additions) into SIMD code at runtime
(as opposed to e.g. binary translation [7]) and use register
renaming tables to simultaneously execute multiple warps.

A. Front-End

Executing SIMT code efficiently requires hardware support
for predicated execution and branch- as well as reconvergence
handling. In SIMT models, each thread inside a warp executes
the same (scalar) code, but is parameterized by its index inside
the warp (CUDA: lane_id). SIMD code, on the other hand,
operates only on whole vectors at once. Thus, we propose
modifications to CUDA’s virtual PTX code in order to make
it more SIMD-friendly, simplifying processing in the back-
end. Changes are visualized using the SpMV example in Fig.
1.

Metadata registers. We follow the SIMT-on-SIMD
paradigm of ISPC [18] by mapping the corresponding
registers of threads in a warp to lanes in SIMD registers. We
find that it is possible to emulate SIMT execution by explicitly
associating keywords such as $tid in metadata registers to
each lane (parameterized SIMD execution). Appearances of
those keywords in the code are then translated to registers
with suitable execution, as marked by (1) in Fig. 1. Unless
there is branching involved, SIMT code translates 1:1 into
SIMD code; predicated instruction are realized through
masked SIMD registers. One more data register holds a
candidate PC per thread.

Scalar branch control. Without such per-lane program
counters (PCs), SIMD hardware is unable to track execution
paths of different threads. Instead, all threads must follow the
same path of execution, inactive threads’ lanes are masked
out. In order to handle divergence and lane masks, we use the
technique by Lorie and Strong [15] that inserts JOIN nodes
into the code at which the activity of all lanes is tested; if
(through e.g. branching) no active threads remain, the PC of
an inactive thread is picked up as the warps’ sole PC. In the
following, we refer to PTX code with these two additions as
vector-ready PTX (vrPTX).

B. Back-End

With parameterized SIMD execution, differently-sized
warps all execute the same vrPTX code. Nevertheless,
executing each warp on its own SIMD core would often
underutilize the hardware and prevent us from hiding latencies,
one of the bedrocks of TOC. Therefore, we propose two
hardware modifications in SIMD systems:

Partitioning. Following our execution models, executing a
single warp of size less than the number of SIMD lanes would
leave many SIMD lanes in wide-SIMD systems unoccupied.
Since a lane’s execution only depends on its metadata, we use
this fact to pack multiple warps’ data into the same SIMD
registers, increasing vector length as necessary and refer to
the packed warps as one partition. Since warps in a partition



float a_val, x_val, res;

int a_ix, col;

a_ix = csr_row[wid] + tid;

a_val = csr_val[a_ix];

col = csr_col[a_ix];

x_val = x[col];

res = a_val * x_val;

for(int s = 1; s < ntids; s *= 2)

{

if(tid + s < ntids)

res += shuffle_down(res, s);

}

if(tid == 0)

b[wid] = res;
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.reg .b32 %a_val, %x_val, %res, %0, %s;

.reg .pred %loop, %if, %ifs;

ld.global.b32 %a_ix, [$wid + csr_row];

add.i32 %a_ix, %a_ix, $tid;

mul.f32 %res, %x_val, %a_val;
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setp.lt.i32 %loop, %s, $ntids;

bra L2;
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Figure 1: Our solution integrates a modified compilation pass from CUDA to vector-ready PTX, that enables execution of
SIMT code on SIMD architectures by concatenating threads’ registers into SIMD registers. There, we 1 add special registers
for warp and thread indices, 2 insert synchronization point for PC selection after thread divergence 3 turn predicated into
masked instructions.

may diverge at branches, we propose the following: in the
compile phase, we unroll the vrPTX source for multiple values
of ntids and count the resulting number of instructions.
We then group the possible values of ntids into buckets
according to the difference in their number of instructions;
warps that fall into the same bucket may be put into the
same partition, hoping that they would behave similarly. We
may repeat that experiment for random outcomes of branch
instructions to improve our estimate.

Vector code issue and multiplexing. Even with packing,
we still need a method to handle warps of drastically
different sizes and diverging control flow. Wrapping warps
into SMT threads is not an option: with larger SIMD registers,
context switches become prohibitively expensive. Instead, we
propose a static partition multiplex scheme that uses a register
renaming unit to execute multiple partitions at once. We
visualize our idea in Fig. 2b: As long as vl is less than
the number of SIMD lanes, all partitions require the same
number of SIMD registers. Hence, we can proceed analogous
to SIMT processors and divide the register file according to
the partitions. In our example in Fig. 2b, partition 0 (packing
warps 0 and 2) uses physical SIMD registers v0 through
v4. Using this partitioned register table (PRT), the incoming
vrPTX instructions can be mapped conflict-free to physical
SIMD registers. After the mapping, a lookup table performs
the 1:1 translation from vrPTX to SIMD vector instructions
and sets the runtime vl accordingly. After renaming, there
are no conflicts between streams from different partitions, so
all are multiplexed into the same instruction buffer. Through a

vector instruction scheduler, this method results automatically
hides latencies.

C. Integration into SX-Aurora

As a practical example, we consider the modification of a
vector processor design that is already on the market: NEC’s
SX-Aurora TSUBASA [21]. Aurora’s PCIe cards offers up
to 10 cores at 1.6 GHz with up to 3.07 TFLOPs in double
precision mode. All cores share 16 MB last-level cache (LLC)
and 48 GB HBM2 memory with a peak bandwidth of 1.53
TB/s. Each Aurora core includes a scalar processor (SPU)
and a vector processing unit (VPU) (with several vector
pipeline processors (VPP)) as in Fig. 2a. The VPU uses
register renaming to execute vector instructions out-of-order
by dispatching them to vector data and mask registers as well
as FMA/ALU execution units. In our design, we focus on
the VPU exclusively and use only the instruction fetching
capabilities of the SPU. Fig. 3 depicts our modifications:
Compared to the original VPU, we pull the register renaming
unit before the vector instruction buffer, since we do not
use out of order execution within partitions. Instead, vrPTX
instructions are loaded for multiple partitions and multiplexed
into a single vector instruction stream. Hence, we offer a
comparatively cheap way to leverage existing IP for efficient
irregular processing.

V. SIMULATION RESULTS

Due to a lack of details regarding NEC’s SX-Aurora, we
used the available ISA documentation in order to build a
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Figure 2: (a) SX-Aurora’s vector unit offers 8 VPPs and an out-of-order scheduler that resolves hazards through register
renaming. (b) We propose to re-purpose the register renaming unit to multiplex vrPTX instruction streams from multiple warps
into one single stream of vector instructions.
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Figure 3: Integration of our proposed warp multiplexer (Figure
2a) into SX-Aurora’s vector core. We move the instruction
buffer behind it and remove the SPU, except its instruction
fetch unit.

model following Fig. 2a and simulate it using the SimPy
framework [16]. We express all latencies in terms of multiples
of a simple arithmetic vector operation that takes 1 cycle,
any complex resp. store operation’s latency is the active
vector length. We simulate one core of the vector processor
with the same number of memory controllers and ports as
Aurora. Our simulation consumes the generated PTX from
our SPMV example code (see Figure 1). We input multiple
matrices from the SuiteSparse Matrix Collection’s [6] linear
programming category, since these matrices often suffer from

data irregularity (i.e. different row lengths). This test is meant
to showcase two things: First, allowing more partitions (t –
also the number of required instruction fetch units) per core
results in a larger vector instruction buffer which leads to better
utilization of the execution units and thus less empty cycles.
Second, packing can save instructions by batching warps –
again, we expect less time to termination.

Figs. 4 presents simulation results for two matrices that are
representative for the test set: lp22 (2, 958×16, 392; 68, 512 nz
– first row) and mycielskian11 (1, 535× 1, 535; 134, 710 nz –
second row). Their row length distributions, and thus warp
size distributions, are visualized in Figs. 4a. Figs. 4b support
our first hypothesis: Independent from the packing setup, more
slots result in consistently less cycles being used. More slots
lead to more and potentially different simultaneous instructions
in the instruction buffer which in turn may be executed in
parallel (pending execution unit availability). Furthermore,
a looser threshold for packing (permitting higher warp size
variations inside a partition) further reduces the total number
of cycles spent. In Figs. 4c, we visualize the execution
unit utilization in the same experiments: Again, both more
partitions as well as looser packing thresholds increase the
utilization until reaching a plateau.

Lastly, we point to the error bars for t = 4 (Figs. 4b, 4c):
for each parameter setting, we ran the simulation 100 times,
every time with a random order of the input matrix’ rows, and
plot the resulting error bars in both cycle and utilization plot.
We point out that although the variation is relatively large, at
times negating the benefit of packing entirely, the average line
(black) tends strongly towards the better region (lower cycles,
higher utilization). This indicates that a smaller number of
outliers is responsible for such failures. Since we currently do
not support work stealing or dynamic allocation, these outliers
directly correspond to certain row orders. We leave a closer
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Figure 4: Results from a model-driven simulation of our setup running an SpMV kernel for two sparse matrices (upper row:
lp22, lower row: mycielskian11) with one order of magnitude irregularity. The results show that our architecture modifications
help to make efficient use of the execution units and hide latencies.

investigation for future work.

VI. CONCLUSION

In this paper, we briefly discussed how existing vector
accelerators could potentially be improved: Embedded in a
full stack of programming model, compiler and architecture
changes, they can mark a first step towards throughput oriented
computing with full support for irregular workloads while
retaining the familiar CUDA programming model. Having so
far only validated our ideas using a model-based simulation,
we plan to follow that up with a cycle-accurate simulation of
the proposed system.

REFERENCES

[1] A. Armejach, H. Caminal, J. M. Cebrian, R. González-Alberquilla,
C. Adeniyi-Jones, M. Valero, M. Casas, and M. Moretó. Stencil codes
on a vector length agnostic architecture. In PACT’18.

[2] K.-C. Chen and C.-H. Chen. Enabling SIMT Execution Model on
Homogeneous Multi-Core System. ACM TACO, 15(1):1–26, 2018.

[3] Z. Chen and D. Kaeli. Balancing Scalar and Vector Execution on GPU
Architectures. In IPDPS’16.

[4] N. Clark, A. Hormati, S. Yehia, S. Mahlke, and K. Flautner. Liquid
SIMD: Abstracting SIMD hardware using lightweight dynamic mapping.
In HPCA’07.

[5] S. Collange. Simty: Generalized SIMT execution on RISC-V. 2017.
[6] T. A. Davis and Y. Hu. The University of Florida sparse matrix

collection. ACM TOMS, 38:1–25, 2011.
[7] G. Diamos, A. Kerr, and M. Kesavan. Translating GPU Binaries to

Tiered SIMD Architectures with Ocelot. Technical Report GIT-CERCS-
09-01.

[8] S. Frey, G. Reina, and T. Ertl. SIMT Microscheduling: Reducing Thread
Stalling in Divergent Iterative Algorithms. In PDP’20.

[9] W. W. L. Fung and T. M. Aamodt. Thread block compaction for efficient
SIMT control flow. In HPCA’11.

[10] W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic warp
formation: Efficient MIMD control flow on SIMD graphics hardware.
ACM TACO, 6(2):1–37, 2009.

[11] M. Garland and D. B. Kirk. Understanding throughput-oriented
architectures. Communications of the ACM, 53(11):58–66, 2010.

[12] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun. Accelerating
CUDA graph algorithms at maximum warp. ACM SIGPLAN Notices,
46(8):267–276, 2011.

[13] M. Huzaifa, J. Alsop, A. Mahmoud, G. Salvador, M. D. Sinclair, and
S. V. Adve. Inter-kernel Reuse-aware Thread Block Scheduling. ACM
TACO, 17(3):1–27, 2020.

[14] J. Kim, J. Cha, J. J. K. Park, D. Jeon, and Y. Park. Improving
GPU Multitasking Efficiency Using Dynamic Resource Sharing. IEEE
Computer Architecture Letters, 18(1):1–5, 2019.

[15] R. A. Lorie and H. R. Strong Jr. Method for conditional branch execution
in SIMD vector processors, U.S. Patent US4435758A, Mar. 1984.

[16] K. G. Müller and T. Vignaux. Simpy.
https://github.com/cristiklein/simpy.

[17] D. Nuzman, S. Dyshel, E. Rohou, I. Rosen, K. Williams, D. Yuste,
A. Cohen, and A. Zaks. Vapor SIMD: Auto-vectorize once, run
everywhere. In CGO’11.

[18] M. Pharr and W. R. Mark. Ispc: A SPMD compiler for high-performance
CPU programming. In Inpar’12.

[19] M. Stanic, O. Palomar, T. Hayes, I. Ratkovic, A. Cristal, O. Unsal, and
M. Valero. An Integrated Vector-Scalar Design on an In-Order ARM
Core. ACM TACO, 14(2):1–26, 2017.

[20] A. Tino, C. Collange, and A. Seznec. SIMT-X: Extending Single-
Instruction Multi-Threading to Out-of-Order Cores. ACM TACO,
17(2):15:1–15:23, 2020.

[21] Y. Yamada and S. Momose. Vector engine processor of NEC’s brand-
new supercomputer SX-Aurora TSUBASA. In HotChips’18.

[22] Y. Yang, P. Xiang, M. Mantor, N. Rubin, L. Hsu, Q. Dong, and H. Zhou.
A Case for a Flexible Scalar Unit in SIMT Architecture. In IPDPS’14.


