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We present a new algorithm for solving the dense linear (sum) assignment problem and an efficient, parallel
implementation that is based on the successive shortest path algorithm. More specifically, we introduce the
well known epsilon scaling approach used in the Auction algorithm to approximate the dual variables of the
successive shortest path algorithm prior to solving the assignment problem to limit the complexity of the
path search. This improves the run time by several orders of magnitude for hard to solve real-world problems,
making the run time virtually independent of how hard the assignment is to find. In addition, our approach
allows for using accelerators and/or external compute resources to calculate individual rows of the cost matrix.
This enables us to solve problems that are larger than what has been reported in the past, including the ability
to efficiently solve problems whose cost matrix exceeds the available systems memory. To our knowledge,
this is the first implementation that is able to solve problems with more than one trillion arcs in less than 100
hours on a single machine.

CCS Concepts: •Mathematics of computing→ Combinatorial algorithms; Combinatorial optimiza-
tion.

Additional Key Words and Phrases: Successive Shortest Path Algorithm, Parallel Processing, Epsilon Scaling

ACM Reference Format:
Stefan Guthe and Daniel Thuerck. 2021. Algorithm 1015: A Fast Scalable Solver for the Dense Linear (Sum)
Assignment Problem. ACM Trans. Math. Softw. 47, 2, Article 18 (April 2021), 27 pages. https://doi.org/10.1145/
3442348

1 INTRODUCTION
The linear assignment problem (LAP) is one of the fundamental combinatorial problems. It consists
of a number of sources that needs to be assigned to the same number of targets, where each possible
assignment carries a certain cost. The desired solution is the assignment of all sources with minimal
total costs.
An LAP with assignment variable 𝑥𝑖 𝑗 , 𝑖, 𝑗 = 1...𝑛 and weight (or cost) matrix 𝑤 ≥ 0 can be

expressed as the following linear program:

min
∑︁
𝑖 𝑗

𝑤𝑖 𝑗 · 𝑥𝑖 𝑗
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subject to ∑︁
𝑗

𝑥𝑖 𝑗 = 1 (1)∑︁
𝑖

𝑥𝑖 𝑗 = 1

𝑥𝑖 𝑗 ≥ 0, 𝑥 integer
The LAP’s constraint matrix is famously totally unimodular, i.e. all vertices of the polyhedron
are integral. Thus, we drop the integrality requirement and solely work with the linear program
relaxation (LP). The dual of the formulation above is:

max
∑︁
𝑖

𝑢𝑖 +
∑︁
𝑗

𝑣 𝑗 (2)

subject to
𝑤𝑖 𝑗 − 𝑢𝑖 − 𝑣 𝑗 ≥ 0 (3)

Here, 𝑢𝑖 and 𝑣 𝑗 are the dual variables and 𝜋𝑖 𝑗 := 𝑤𝑖 𝑗 − 𝑢𝑖 − 𝑣 𝑗 ≥ 0 is denoted as the reduced cost. By
instancing the KKT optimality criteria for the primal-dual pair, we arrive at the following: A pair
of feasible primal solution 𝑥∗ and feasible dual solution (𝑢∗, 𝑣∗) is optimal iff

𝑥∗𝑖 𝑗
(
𝑤𝑖 𝑗 − 𝑢∗

𝑖 − 𝑣∗𝑗
)
= 0 . (4)

Essentially, the dual problem is to maximize the sum of the dual variables for non-negative reduced
costs. For simplicity, we assume that 𝑤 ≥ 0, as this can easily be guaranteed by subtracting the
minimum cost value from each𝑤𝑖 𝑗 . For our implementation, we focus on problems with large, dense
cost matrices that so far cannot be solved efficiently [Dell’Amico and Toth 2000]. All theoretical
properties of our algorithm, however, also hold for problems with sparse matrices.

We note that the terminology used for variables and input data in the LAP varies from author to
author and is often motivated by the application at hand. Similar to Jonker and Volgenant [1987],
we refer to the indices 𝑖 and 𝑗 as “rows” and “columns”, inspired by the form of the cost matrix. The
expressions “source” / “target” as well as “worker” / “job” can be used equivalently. The problem
may be formulated equivalently as picking a set of disjoint edges with a minimum total weight
on a dense bipartite graph over the set of row nodes 𝑅 = ∪𝑖 {𝑟𝑖 } and column nodes 𝐶 = ∪𝑗 {𝑐 𝑗 } for
𝑖, 𝑗 = 1, . . . , 𝑛 with edge weights𝑤𝑖 𝑗 for (𝑟𝑖 , 𝑐 𝑗 ).

Notation. In line with the notation used in the LP above, we use𝑤𝑖 𝑗 to refer to element (𝑖, 𝑗) of
matrix𝑤 ; a : serves as wildcard to denote either all columns or all rows, e.g.𝑤 :1 is the first column of
𝑤 , whereas𝑤1: represents the first row of𝑤 . Similarly, an assignment 𝑎: = 𝛼 assigns all components
of the vector 𝑎 the value 𝛼 ; comparison operators such as ≤, ≥ are applied element- wise in case of
a matrix or vector. Corresponding to an assignment variable 𝑥 , we define a (partial) assignment
𝐴 ⊆ 𝑅 ×𝐶 and shorthands 𝐴(𝑟𝑖 ) as well as 𝐴(𝑐 𝑗 ) returning the assigned column resp. row or ∅ if
these are unassigned. Putting 𝐴(𝑟𝑖 ) in square brackets [𝐴(𝑟𝑖 )] refers to the index of the assigned
row resp. column, e.g. 𝑗 for 𝑐 𝑗 . In general, we try to clearly distinguish between row/column indices
and their representative nodes in residual graphs in the remainder of this paper.
Applications. The LAP is used in a variety of different applications. Originally it was used as a

means to assignworkers to jobs suiting their abilities [Munkres 1957]. The method is also frequently
used to permute and scale sparse matrices before applying a factorization [Duff and Koster 2001],
as a metric for image retrieval [Rubner et al. 2000] and for object tracking [Zhang et al. 2008].
Other areas, such as color and style transfer, try to approximate the solution to the LAP due to its
computational costs [Pouli and Reinhard 2011]. When analyzing the performance of our algorithm,
we need to take the properties of the applications into account: For a random cost matrix, there is a
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constant probability that the correct assignment is contained within the lowest𝑚 ≤ 𝑛 cost values
of any given row. For an application on the other hand, sources and/or targets may form clusters,
drastically changing the distribution of cost values in a given row (see for example [Schmitzer
2015, 2016]). Due to this change, the probability that the correct assignment is contained within
the lowest𝑚 cost values is no longer constant between rows, i.e. the expected performance heavily
depends on the structure of the problem.

Assumptions. Our approach is designed to handle a large, dense cost matrix𝑤 . While the entries
in𝑤 can potentially be calculated on-the-fly, we assume that this calculation is costly and storing
at least some of the values in a matrix is beneficial. Consequently, our code consumes a function
that generates𝑤 ’s entries on the fly. Depending on the amount of memory available, the solver can
then decide by itself when to cache entries.

Contributions. We propose a modified successive shortest-path based algorithm [Engquist 1980]
for solving large, dense linear assignment problems.We present an implementation of said algorithm
in an LAP-solver that is able to handle problem sizes that are several orders of magnitudes larger
than published in previous work. We specifically address the computational costs of solving these
problems and additionally present an extension to handle problems whose cost matrix can no
longer be stored in memory but can be calculated on demand. Our contributions are as follows:

• We propose a dual initialization method that drastically improves the average run time for
randomly generated cost matrices as well as real problems (verified against the object tracking
and image retrieval task mentioned above).

• We present a parallelization of our shortest-path based method and discuss low-level op-
timizations w.r.t. access patterns, memory organization and inter-thread communication
during the different stages of the computation.

• We describe ways to handle the challenges that come with larger problems and propose
caching strategies for saving incomplete cost matrices as well as recomputation guidelines
using an additional graphics processing unit (GPU) as coprocessor.

• While the basic algorithm assumes an equal number of rows and columns, we extend our
implementation to also solve the unbalanced problem with more columns than rows by
including virtual rows with constant cost values. These rows are explicitly handled without
requiring additional storage of cost values.

2 RELATEDWORK
Fundamentally, the linear assignment problem (first mentioned by von Neumann [Von Neumann
1953] in the context of two-player zero-sum games) is an instance of the minimum cost flow problem
where a graph 𝐺 connects each row with all columns, i.e. forms a dense bipartite graph. Upon
including two artificial nodes 𝑠, 𝑡 — 𝑠 connected solely to all rows, 𝑡 to all columns — a minimum
cost flow satisfying demand 𝑛 of 𝑠 , −𝑛 of 𝑡 and 0 of all rows and columns constitutes an optimal
assignment. Both linear assignment problems and min-cost flow problems are covered by a large
body of work. Focusing on the overarching algorithmic concepts, we give a brief classification
and review of the different algorithms for the LAP. Our list is by no means complete; we thus
encourage the reader to follow the stream of successively refined and related methods, starting
with references given by Dell’Amico and Toth [2000]. Notably, the assignment problem was part of
the first DIMACS implementation challenge [Johnson and McGeoch 1993].

Linear programming. The most commonly investigated approaches are based on linear program-
ming resp. flow algorithms. Clearly, using an off-the-shelf solver for the LAP’s LP-formulation
works in principle but is not very efficient both in terms of storage and computational complexity.
As with other integral LPs, the LAP is known to contain many redundant faces, thus causing
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pivot operations without progress in the solution value and therefore unnecessary steps in the
Simplex algorithm. Replacing the linear algebra in the simplex with symbolic, problem-dependent
computations leads to problem-specific variants such as the AB simplex [Barr et al. 1977] or the
network simplex [Orlin 1997]. Both approaches restrict the selection of bases to find symbolic
representations to avoid unnecessary pivots. For larger-scale problems, interior-point methods
were also investigated [Goldberg et al. 1992], but work in this direction was discontinued to our
knowledge.
Primal-dual methods are by far the largest class of methods for solving LAPs. Based on the

Hungarian algorithm [Kuhn 1955], primal-dual methods output a sequence of primal and/or
dual solution pairs that ultimately satisfy the complementary slackness conditions. The original
Hungarian method with complexity 𝑂 (𝑛4) and its successors start from any given, partial primal
solution and a feasible dual solution and proceed in rounds. According to the primal-dual scheme
applied to the LAP, each round consists of solving a restricted primal problem given the current
dual. In the Hungarian algorithm, this restricted primal is an unweighted bipartite matching on the
subset of edges that have reduced costs 0, so each round itself has complexity𝑂 (𝑛3). Over the years,
several improvements and algorithmic reorganizations, most notably the advent of alternating trees,
have resulted in variants of the algorithm with worst-case complexity 𝑂 (𝑛3) [Edmonds 1965].
Applying the primal-dual scheme to the min-cost flow instead gives rise to successive shortest

path algorithms (for details, see next section) [Edmonds and Karp 1972; Tomizawa 1971]. Starting
from a feasible dual solution, these algorithms iteratively find shortest paths from unassigned
rows to unassigned columns on the residual graph of reduced costs. Each shortest path adds one
more assigned row. Using an efficient implementation of e.g. Dijkstra’s shortest path algorithm via
Fibonacci heaps [Fredman and Tarjan 1987] can even reduce the theoretical complexity slightly
below 𝑂 (𝑛3). To improve the run time in practice, several authors have proposed initialization
procedures and heuristics to built into shortest path approaches: Jonker and Volgenant [1987] use a
3-stage initialization procedure similar to Bertsekas [1981] of outpricing certain columns to avoid
repeated long paths late in the computation, a general issue with path and flow-based approaches.
Orlin and Lee [1993] even claim that their QuickMatch heuristic cause measured linear behavior in
the number of arcs (𝑂 (𝑛2) for dense problems) based on their computational empirical evidence.
However, they evaluated their approach only on randomly generated cost matricies. As of today,
primal-dual methods are the approaches of choice for most problems.
Relaxation-based. Departing from flow-based approaches, Bertsekas [1988] proposes to solve

the LAP by relaxing the complementary slackness conditions: He defines the 𝜖 - Complementary
Slackness (𝜖 - CS) by−𝜖 ≤ 𝑥𝑖 𝑗

(
𝑤𝑖 𝑗 − 𝑢𝑖 − 𝑣 𝑗

)
for any 𝜖 > 0. In each iteration of hisAuction algorithm,

values or “bids” for each unassigned row 𝑖 and a minimum price column 𝑗 are computed based on
the weights𝑤𝑖 𝑗 and the cost 𝑣 𝑗 of the row currently assigned to column 𝑗 . In a second phase, prices
(referring to the reduced costs from above) for columns are determined among bids and rows are
assignment greedily. While this algorithm bears some resemblance to the Hungarian method with
its restriction of the assignable objects, it behaves fundamentally different in practice: Whereas the
Hungarian method often traverses long alternating paths in the last iterations and thereby changes
a large number of assignments (serializing the computation to the point of being bounded by the
size of its strongly connected components), the Auction method is known to rapidly converge to
a solution close to an optimum, but then needing a higher amount of time to reach optimality at
𝜖 = 0. The process of lowering 𝜖 in subsequent iterations is called 𝜖-Scaling. From a theoretical
point of view, however, its complexity is worse than that of the best augmented path approaches
[Dell’Amico and Toth 2000]. The auction approach is specifically suitable for implementations on
(massively) parallel architectures [Sathe et al. 2012].
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Continuous approaches. Besides directly applying linear programming solvers, the LAP can be
interpreted as a special instance of the transport problem with all demands and supplies set to 1 and
using only discrete quantities. While for the discrete transport problems min-cost flow approaches
can lead to efficient algorithms, other approaches are feasible as well: Every integral and non-
integral feasible solution of the LAP and, by extension, the transport problem can be interpreted as
a doubly-stochastic assignment matrix. An algorithm for finding such a doubly-stochastic matrix is
presented by Sinkhorn and Knopp [1967]. As the resulting matrix is not binary (doubly-stochastic
matrices only have row- and column sums of 1), an additional step of rounding is necessary. Greedily
selecting the largest entry in each row while respecting the LAP constraints usually result in a good
approximation to the optimum. Schmitzer [2015] presents an approach to solve the dense LAP by
replacing it with a series of sparse problems. Each of the generated subsets of feasible assignments
guarantees feasibility of all excluded dual constraints after their solution. Efficient strategies for the
subset selection, called shielding neighborhoods, are presented for offset metric (i.e. Euclidean) type
cost functions. Further acceleration is provided by a multi-scale scheme [Schmitzer 2016]. However,
similar to the Auction algorithm, these solvers need a large number of iterations to converge to the
discrete solution. In addition, even if the algorithm converged close to a discrete solution, there is
no guarantee that this is indeed the assignment with the minimal cost.

Implementations. For all mentioned algorithmic approaches, there are several implementations
available [Duff and Koster 1999; Dufossé et al. 2014; Vasconcelos and Rosenhahn 2009]. Dell’Amico
and Toth [2000] discuss computational results for several implementations, however all benchmark
problem fall short of 𝑛 = 10, 000 due to the computation time requirements or due to memory
consumption. Most recently, Date and Nagi [2016] presented a GPU-supported implementation
for dense problems with 𝑛 = 40, 000. They do, however, not address the issue that larger problems
often do not fit into the memory of all available GPUs and/or into the system memory.

Instead of simply presenting another heuristic for decreasing the computational costs of solving
a LAP, we aim at delivering an easy to use framework that allows to solve LAPs of arbitrary size
using the available resources, both computational and memory, as efficiently as possible.

3 A SUCCESSIVE SHORTEST PATH ALGORITHMWITH APPROXIMATE DUAL
INITIALIZATION

Our algorithm for solving the dense LAP to global optimality is of the type successive shortest path
algorithm with its core structure based on Jonker and Volgenant [1987]. Our improvement, which
we call 𝜖-Pricing, is based on a re-interpretation of the LAP’s optimality conditions. We therefore
sketch the main ideas behind successive shortest path algorithms as primal-dual algorithm before
discussing the changes for 𝜖-Pricing. For brevity, we do not discuss the algorithms’ background in
regards to min-cost flow problems - although the following derivation is mostly an instance of the
corresponding theorems on flow with the formulation changed to reflect the naming conventions
of the LAP.

3.1 Deriving successive shortest-path methods
As described in Section 1, we denote the dual variables by 𝑢, 𝑣 ∈ R𝑛 . Any feasible dual solution 𝑢, 𝑣
satisfies the dual constraints

𝑤𝑖 𝑗 − 𝑢𝑖 − 𝑣 𝑗 ≥ 0, 𝑖, 𝑗 = 1, . . . , 𝑛. (5)

For a partial assignment 𝑥 ∈ {0, 1}𝑛×𝑛 that satisfies the primal constraints for 𝑘 rows and columns
and is 0 everywhere else, we define the residual graph 𝐺𝑥 = (𝑉 , 𝐸𝑥 ) that can be used to add
an unassigned row to the solution by finding a shortest path from 𝑠 to 𝑡 through row 𝑟𝑖 , where
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𝑉 = 𝑅 ∪ 𝐶 ∪ {𝑠, 𝑡} and
𝐸𝑥 = {(𝑠, 𝑟𝑖 ) : 𝑖 = 1, . . . , 𝑛} (6)

∪ {(𝑐 𝑗 , 𝑟𝑖 ) : 𝑥𝑖 𝑗 = 1}
∪ {(𝑟𝑖 , 𝑐 𝑗 ) : 𝑥𝑖 𝑗 = 0}
∪ {(𝑐 𝑗 , 𝑡) : 𝑥:𝑗 = 0}

with costs 𝜋 = 0 except for
𝜋𝑖 𝑗 = 𝑤𝑖 𝑗 − 𝑢𝑖 − 𝑣 𝑗 , where 𝑥𝑖 𝑗 = 0. (7)

Theorem 3.1. Let 𝑑 the distance vector of shortest paths from 𝑠 to all other nodes in 𝑉 given a
feasible dual solution 𝑢, 𝑣 . Then, the duals 𝑢 ′, 𝑣 ′ resulting from the update

𝑢 ′
𝑖 := 𝑢𝑖 − 𝑑𝑟𝑖 (8)
𝑣 ′𝑗 := 𝑣 𝑗 + 𝑑𝑐 𝑗 (9)

are still feasible.

Proof. Since 𝑑 is the all-shortest paths distance vector, for every 𝑐 𝑗 , 𝑗 = 1, . . . , 𝑛 we have
𝑑𝑐 𝑗 ≤ 𝑑𝑟𝑖 + 𝜋𝑖, 𝑗 for all 𝑖 = 1, . . . , 𝑛 with 𝑥𝑖, 𝑗 = 0. Therefore,

0 ≤ 𝑑𝑟𝑖 − 𝑑𝑐 𝑗 + (𝑤𝑖 𝑗 − 𝑢𝑖 − 𝑣 𝑗 ) (10)
=𝑤𝑖 𝑗 − (𝑢𝑖 − 𝑑𝑟𝑖 ) − (𝑣 𝑗 + 𝑑𝑐 𝑗 )
= 𝑤𝑖 𝑗 − 𝑢 ′

𝑖 − 𝑣 ′𝑗
□

Given a shortest path (𝑠 → 𝑡) = (𝑠, 𝑟𝑖1 ), (𝑟𝑖1 , 𝑐 𝑗1 ), . . . , (𝑐 𝑗𝑘−1,𝑡 ), this inequality may be sharpened
into an optimality criterion, presented as Theorem 3.2.

Theorem 3.2. Let (𝑟𝑖 , 𝑐 𝑗 ) an edge in the shortest path (𝑠 → 𝑡) as evaluated by 𝑑 . Then,
𝑤𝑖 𝑗 − 𝑢 ′

𝑖 − 𝑣 ′𝑗 = 0. (11)

Proof. For edges (𝑟𝑖 , 𝑐 𝑗 ) on the shortest path, the path’s suboptimality property yields
𝑑𝑐 𝑗 = 𝑑𝑟𝑖 + 𝜋𝑖 𝑗 (12)

and – using the term rearrangements from above – the claim. □

For a partial assignment 𝑥 and any feasible duals 𝑢, 𝑣 , finding a shortest path (𝑠 → 𝑡) and
modifying the 𝑥 by including all edges (𝑟𝑖 , 𝑐 𝑗 ) in the path while excluding assignments (𝑐 𝑗 , 𝑟𝑖 )
accordingly yields a larger assignment 𝑥 ′. By Theorems 3.1 and 3.2, the updated duals 𝑢 ′, 𝑣 ′ are

• feasible and
• satisfy all complementary slackness constraints.

Unless 𝑥 ′ is a complete assignment, however, we still lack primal feasibility. This insight then gives
rise to successive shortest path methods, a class of dual algorithms. A descriptive pseudocode is
given in Algorithm 1.
In each iteration of Algorithm 1 (an augmentation), the assignment is extended by one more

column (for the concrete mechanism, see Algorithm 2, line 23ff.); thus the loop is executed 𝑛 times.
Since all edge weights are nonnegative, Dijkstra’s algorithm can be used for finding a shortest path.
As the graph contains a total of 𝑛2 edges, the Dijkstra’s algorithm worst-case complexity becomes
𝑂 (𝑛2) leading to an overall complexity of 𝑂 (𝑛3). Note that there is no priority queue required
for dense problems since all path costs have to be checked and updated in each step. In practice,
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ALGORITHM 1: Basic dual successive shortest path algorithm.
input :Weight matrix𝑤 ≥ 0
output :Optimal assignment 𝑥∗

1 𝑥0 := 0, 𝑢0 := 0, 𝑣0 := 0
2 for 𝑘 := 1 to 𝑛 do
3 Construct 𝐺𝑥𝑘−1 = (𝑉 , 𝐸𝑥𝑘−1 )
4 Find a shortest path (𝑠 → 𝑡) on 𝐺𝑥𝑘−1

5 Modify assignment 𝑥𝑘−1 by including all edges (𝑟𝑖 , 𝑐 𝑗 ) and excluding prior assignments (𝑐 𝑗 , 𝑟𝑖 ),
yielding 𝑥𝑘

6 Update duals to 𝑢𝑘 , 𝑣𝑘 as in Theorem 3.1
7 end

several adjustments to the algorithm and extended preprocessing (see e.g. Jonker and Volgenant
[1987]) lead to better average run time but do not improve the worst-case complexity. Typically,
the final augmentation is the bottleneck as the number of scanned columns can get close to the
maximum of 𝑛. This is both true for a purely random cost matrix, where the last 10% of assignments
empirically show a rapid increase in costs (see Figure 1), as well as for all other tests where we can
see a linear increase of the number of scanned columns throughout the entire run (see Figures 1
and 2). Furthermore, traditional implementations of the successive shortest path approach run into
issues if the optimal solution w.r.t. 𝐴(𝑟𝑖 ) and 𝐴(𝑐 𝑗 ) is not unique since all columns with the same
cost will be scanned multiple times. We therefore focus on improving the final augmentations and
avoid scanning columns with equal costs repeatedly by always preferring unassigned columns in
this case which is the weighted equivalent to the lookahead technique of Duff [Duff 1981].

3.2 The implementation of Jonker and Volgenant
After an initial subset of assignments is found using column and row reductions similar to the
Hungarian algorithm, Jonker and Volgenant [1987] switch to the augmented path search. In order
to achieve a correct solution, this initial subset may be empty but it has to be optimal given the
unassigned rows. In fact, the initial assignment can lead to numerical instabilities for non-integer
costs. We thus omit it in our approach.
Our augmented path search, as given in Algorithm 2, consists of three separate stages for each

row 𝑖 . First the shortest augmenting path is found based on the reduced cost using a Dijkstra search.
Next, the assignments along the shortest path are updated in order to add the new row 𝑖 to the
solution. Finally, the dual variable 𝑣 is updated based on the minimal distance to an unassigned
column for each column that was scanned.

3.3 𝜖-Pricing
We now present our remedy to the bottleneck of scanning almost all columns during the shortest
path search in the later augmentations. In the following, we assume that, as in our implementation,
Dijkstra’s algorithm is used for path finding. Following the dynamic programming principle,
Dijkstra’s algorithm exploits the suboptimality principle, which transfers to Algorithm 2.

Lemma 3.3. In all augmentations 𝑖 ≥ 0 in Algorithm 2, the following invariant is maintained:
Let Π : 1, . . . , 𝑛 → 1, . . . , 𝑛 be a permutation such that S𝑘+1 = S𝑘 ∪ {Π𝑘 } for all 𝑘 ≤ 𝑖 . Then
0 ≤ 𝑑1

Π1
≤ 𝑑2

Π2
≤ . . . ≤ 𝑑𝑘Π𝑘

, i.e. the Dijkstra algorithm sorts all visited columns by their distance from
𝑟𝑖 in 𝐺𝑥𝑘−1 .
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Fig. 1. Path length and scan count during augmented path search using the straight forward successive
shortest path search (left) compared against our approach (right) on random cost matrices of size 1000× 1000.
The random seed was fixed for all matrices in this figure.

Proof. Having omitted the dual variable 𝑢 (since, given a feasible solution 𝑥 inducing an assign-
ment 𝐴, we can recover 𝑢 by setting 𝑢𝑖 = 𝑤𝑖𝐴(𝑖) − 𝑣𝐴(𝑖) ) from the reduced costs, we continue using
the shorthand 𝜏𝑖 𝑗 := 𝜋𝑖 𝑗 + 𝑢𝑖 ≥ 0 from Algorithm 2.
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Fig. 2. Path length and scan count during augmented path search using the straight forward successive
shortest path search (left) compared against our approach (right) on low rank cost matrices of size 1000×1000.
The random seed was fixed for all matrices in this figure.
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ALGORITHM 2: Basic successive shortest path algorithm consisting of a Dijkstra path search for
the closest unassigned column, followed by an update to the assignment and the dual variable 𝑣 . For
convenience, we use the shorthand 𝜏𝜇𝜆 = 𝑤𝜇𝜆 − 𝑣𝑖−1

𝜆
.

input :Weight matrix𝑤 ≥ 0
output :Optimal solution to the linear assignment problem in 𝐴

1 𝑣0· := 0; 𝐴 := ∅;
2 for 𝑖 := 1 to 𝑛 do // Iterate over all rows
3 𝑝 · := 𝑖; // Dijkstra path search
4 𝑑0 := 𝜏𝑖:;
5 𝜆0 := argmin𝑗 𝑑

0
𝑗
;

6 S0 := {𝜆0};
7 𝑘 := 0;
8 while 𝐴(𝑐𝜆) ≠ ∅ do // Search until unassigned column found
9 𝑘 := 𝑘 + 1;

10 𝑑𝑘 := 𝑑𝑘−1;
11 𝜇𝑘 := [𝐴(𝑐𝜆𝑘−1 )];
12 Δ := 𝑑𝑘

𝜆𝑘−1 − 𝜏𝜇𝑘𝜆𝑘−1 ;
13 foreach 𝑗 ∉ S do
14 𝛾 := Δ + 𝜏𝜇𝑘 𝑗 ;
15 if 𝛾 < 𝑑𝑘−1

𝑗
then // Path through 𝑟𝜇𝑘 is shorter

16 𝑝𝑖
𝑗

:= 𝜇𝑘 ;
17 𝑑𝑘

𝑗
:= 𝛾 ;

18 end
19 end
20 𝜆𝑘 := argmin𝑗∉S 𝑑𝑘

𝑗
; // Continue search with column 𝑐𝜆𝑘

21 S𝑘 := S𝑘−1 ∪ {𝜆𝑘 };
22 end
23 𝑗 := 𝜆𝑘 ; // Dijkstra search complete
24 repeat // Update assignment based on shortest path
25 𝛼 := 𝑗 ;
26 𝛽 := 𝑝 𝑗 ;
27 𝑗 := [𝐴(𝑟𝛽 )];
28 𝐴(𝑐𝛼 ) := 𝑟𝛽 ;
29 𝐴(𝑟𝛽 ) := 𝑐𝛼 ;
30 until 𝛽 = 𝑖;
31 foreach 𝑗 ∈ S𝑘 do // Update 𝑣 based on minimal costs found during search
32 𝑣𝑖

𝑗
:= 𝑣𝑖−1

𝑗
+ 𝑑𝑘

𝑗
− 𝑑𝑘

𝜆𝑘
;

33 end
34 end

Let 𝑖 be a fixed augmentation. Dual feasibility implies 𝑑0 := 𝜏𝑖: ≥ 0. In each iteration of the inner
while-loop (line 8ff.), 𝜆𝑘 := argmin𝑗∉S 𝑑

𝑘 where

𝑑𝑘𝑗 = min(𝑑𝑘−1
𝑗 , 𝑑𝑘−1

𝑗 − 𝜏𝜇𝑘𝜆𝑘−1 + 𝜏𝜇𝑘 𝑗 ), 𝑗 ∉ S.
Plainspoken, this loop probes the distances to all not-yet-visited column nodes via 𝑟𝜇𝑘 .
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The permutation Π describes the order of 𝑐𝜆’s visited during iteration 𝑘 . Adding up the costs for
the path (𝑟𝑖 , 𝑐𝜆1 ), (𝑐𝜆1 , 𝐴(𝜆1)), . . . , (𝑐𝜆𝑘 , 𝐴(𝜆𝑘−1)) leads to

𝑑𝑘
𝜆𝑘

= 𝑑𝑘−1
𝜆𝑘−1 + (𝜏𝜇𝑘𝜆𝑘−1 + 𝜏𝜇𝑘𝜆𝑘 ).

Since Π𝑘 = 𝜆𝑘 ,Π𝑘−1 = 𝜆𝑘−1, we have

𝑑𝑘Π𝑘
− 𝑑𝑘−1

Π𝑘−1
= 𝑑𝑘

𝜆𝑘
− 𝑑𝑘−1

𝜆𝑘−1

= 𝜏𝜇𝑘𝜆𝑘−1 + 𝜏𝜇𝑘𝜆𝑘
≥ 0

By induction, this argument holds for all 𝑘 ≤ 𝑖 . □

Lemma 3.3 states that Dijkstra’s algorithm sorts the (column-) nodes in the residual graph by their
distance from the augmentation row 𝑖 (resp. node 𝑟𝑖 ) and in extension also from the source 𝑠 . Thus,
all 𝑐 𝑗 closer to 𝑠 than 𝜆𝑘 must have been scanned already; otherwise, 𝑐 𝑗 = 𝑐𝜆𝑘 . Each augmentations’
final 𝜆𝑘 therefore partitions the set of columns into two – those closer to the source and those
further away (or unscanned).

Our 𝜖-Pricing leverages that idea in combination with a slight reinterpretation of the optimality
constraints (primal / dual feasibility and complementary slackness) on a graph𝑂 (𝑥∗,𝑢∗,𝑣∗) = (𝐺,𝑉𝑂 )
with 𝑉𝑂 = {(𝑟𝑖 , 𝑐 𝑗 ) : 𝑖, 𝑗 = 1, . . . , 𝑛}.

Lemma 3.4. Assume that the duals before augmentation 𝑖 < 𝑛 are optimal, i.e. 𝑢𝑘−1 = 𝑢∗, 𝑣𝑘−1 = 𝑣∗.
Let 𝑥∗ be the unique optimal assignment for 𝑢∗, 𝑣∗. Then, (𝑟𝑖 , 𝐴(𝑐𝑖 )) is the shortest path found in the
first Dijkstra search (𝑘 = 1) on 𝐺𝑥∗.

Proof. Optimality conditions for 𝑥∗, 𝑢∗, 𝑣∗ imply that

𝑤𝑖 𝑗 − 𝑢𝑖 − 𝑣 𝑗 = 0 ⇐⇒ 𝑥𝑖, 𝑗 = 1.

Following our notation, 𝑥𝑖 [𝐴∗ (𝑐𝑖 ) ] = 1, where 𝐴∗ represents the optimal assignment 𝑥∗.
By feasibility,𝑤𝑖 𝑗 − 𝑢𝑖 − 𝑣 𝑗 ≥ 0, hence for 𝑖 = 1, . . . , 𝑛 we have

𝑤𝑖𝐴(𝑐𝑖 ) − 𝑢𝑖 − 𝑣𝑎𝑐
𝑖
= 0 ≤ 𝑤𝑖 𝑗 − 𝑢𝑖 − 𝑣 𝑗 for 𝑗 = 1, . . . , 𝑛

and thus (𝑟𝑖 , 𝐴(𝑐𝑖 )) is the shortest path from 𝑟𝑖 to any unassigned column node in the residual
graph 𝐺𝑥𝑘−1 .

It remains to be shown that the edge (𝑟𝑖 , 𝐴(𝑐𝑖 )) is actually a part of the residual graph 𝐺𝑥𝑘−1 . By
inductively applying the argument made above, we see that all assignments in happening steps
𝑖 ′ < 𝑖 of the form (𝑟𝑖′, 𝐴(𝑐𝑖′)), reconstructing the assignment 𝑥∗. Thus, 𝐴(𝑐𝑖 ) is unassigned before
augmentation 𝑖 and, in turn, (𝑟𝑖 , 𝐴(𝑐𝑖 )) is an edge in 𝐺𝑥𝑘−1 . □

With Lemma 3.4, we conclude: given optimal duals, each shortest path in each augmentation is
exactly one edge long and scanning is kept minimal. This, in turn, means that each augmentation
only adds one column to the list of scanned columns: the (optimally) assigned one.
𝜖-Pricing approximates the optimal dual by forcing the duals faster toward optimality: In each

augmentation phase, every scanned column’s dual is decreased by an 𝜖 ≥ 0 (for details, see
Algorithm 3). This, in turn, attempts to slowly push all nodes on the path from 𝑟𝑖 to the newly
assigned column node 𝑐𝐴(𝑟𝑖 ) further away from 𝑠 , making them more and more unlikely to be
scanned in the subsequent augmentations. Since edge weights are only ever increased, Theorem
3.1 is still valid; Theorem 3.2, however, is violated - the complementary slackness constraints end
up potentially being violated.
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ALGORITHM 3: Modified version using 𝜖 to avoid continued scanning of the same set of columns. 𝑣 can
be at most −𝑛𝜖 too small (see Equation 13). Again, for convenience, we use the shorthand 𝜏𝜇𝜆 = 𝑤𝜇𝜆 −𝑣𝑖−1

𝜆
.

input :Weight matrix𝑤 ≥ 0
output :Optimal solution to the linear assignment problem in 𝐴

1 [𝜖0, 𝜖𝑚𝑖𝑛, 𝑣
0] := estimateEpsilonAndV(𝑤 ); // estimate initial epsilon and v

2 𝜖 := 𝜖0; // assign initial epsilon
3 while 𝜖 ≥ 0 do
4 𝐴 := ∅;
5 for 𝑖 := 1 to 𝑛 do // Iterate over all rows
6 · · ·
7 𝑑0 := 𝑑0

𝜆0 ;
8 while 𝐴(𝑐𝜆) ≠ ∅ do // Search until unassigned column found
9 · · ·

10 Δ := 𝑑𝑘−1 − 𝜏𝜇𝑘𝜆𝑘−1 ;
11 · · ·
12 end
13 𝑗 := 𝜆𝑘 ; // Dijkstra search complete
14 𝑑𝑘 := max𝑑𝑘−1, 𝑑𝑘

𝜆𝑘
;

15 · · ·
16 foreach 𝑗 ∈ S𝑘 do // Update 𝑣 based on minimal costs and 𝜖
17 𝑣𝑖

𝑗
:= 𝑣𝑖−1

𝑗
+ 𝑑𝑘

𝑗
− 𝑑𝑘 − 𝜖 ;

18 end
19 end
20 𝜖 := getNextEpsilon(𝜖 , 𝜖𝑚𝑖𝑛); // Get next 𝜖 or −1 if 𝜖 was 0
21 end

Relation to the auction algorithm. Setting 𝜖 > 0 and performing 𝑛 augmentations leads to a
feasible, but not an optimal assignment w.r.t the original weights𝑤 . In fact, such a solution only
satisfies relaxed slackness conditions

𝑥𝑖 𝑗 (𝑤𝑖 𝑗 − 𝑢𝑖 − 𝑣 𝑗 ) ≥ −𝑛𝜖 (13)

which draws a close connection to Bertsekas’ auction algorithm [Bertsekas 1988] and his outpricing
of scanned columns [Bertsekas 1981]. In fact, our 𝜖-Pricing resembles the (unnamed) procedure
of adding 𝜖 to bets in the auction algorithm - both lead to a solution that only satisfy (𝑛)𝜖− resp.
𝜖-complementary slackness. Yet, there are important differences between the two approaches:

• In the auction algorithm, all 𝜖−augmented bids are collected and the prices are modified;
during the next bidding rounds, due to the way values and bids are computed, an increment
of 𝜖 is added to all bids. This, in effect, only allows a dual modification of 𝜖 in each auction;
our pricing strategy allows at max an offset of 𝑛𝜖 (depending on the scaling strategy).

• A bidding round does not guarantee an increase in the number of assigned columns - an
augmentation does.

• The number of bidding rounds in the auction algorithm required to converge to a solution
satisfying 𝜖-CS roughly corresponds to max𝑤𝑖 𝑗/𝜖 [Bertsekas 1988] - each successive shortest
path iteration requires exactly 𝑛 augmentations.

To avoid any confusion, we would like to note that both in the auction algorithm as well in our
implementation, 𝜖 is decreased after finding each new assignment - this process is called 𝜖-scaling.
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Fig. 3. Relation between 𝜖 decay and difference to final values of the dual variable 𝑣 for various problem sizes
and classes. Matrix sizes range from 1000 × 1000 (light) to 32000 × 32000 (dark) with 5 different matrices per
size. Note that sanity and rank 1 matrices do not require 𝜖-Pricing due to the initial estimate of 𝑣 , i.e. 𝜖0 was
set to 0.

Lastly, we would like to point out that for a fixed 𝜖 , Algorithm 3 basically performs one dual SSP
pass over the problem. The resulting primal-dual pair (𝑥𝜖 , 𝑢𝜖 , 𝑣𝜖 ) – recovering 𝑢 from 𝑣 as pointed
out for the feasible primal solution 𝑥𝜖 – is feasible. Hence, our algorithm could also be interpreted
as a primal-dual analogue to the auction algorithm.
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3.4 Setting 𝜖

In order to complete Algorithm 3, we need to give details on estimateEpsilonAndV and getNextEpsilon,
which means

• an initial dual solution 𝑣0,
• and initial 𝜖0 as well as
• an 𝜖-decay algorithm.

For a general primal-dual linear program (LP) pair

min 𝑐⊤𝑥 s.t. 𝐴𝑥 = 𝑏, 𝑥 ≥ 0

max𝑏⊤𝑦 s.t. 𝐴⊤𝑦 + 𝑠 = 𝑐, 𝑠 ≥ 0
it holds that

𝑐⊤𝑥 − 𝑏⊤𝑦 = 𝑐⊤𝑥 − 𝑥⊤𝐴⊤𝑦 = 𝑥⊤ (𝑐 −𝐴⊤𝑦) = 𝑥⊤𝑠, (14)
i.e. the dual gap for any feasible primal-dual pair (𝑥,𝑦, 𝑠) is equal to the complementary slackness.
In the case of the matching linear assignment problem, this translates to∑︁

𝑖, 𝑗

𝑤𝑖 𝑗𝑥𝑖 𝑗 −
∑︁
𝑖

𝑢𝑖 −
∑︁
𝑗

𝑣 𝑗 =
∑︁
𝑖, 𝑗

𝑥𝑖 𝑗 (𝑤𝑖 𝑗 − 𝑢𝑖 − 𝑣 𝑗 ).

Since Algorithm 3 follows the primal-dual principle, for each 𝜖 , the resulting primal-dual pair
(𝑥𝜖 , 𝑣𝜖 ) is feasible. Comparing 𝑣𝜖 and the optimal dual 𝑣∗ for the original problem delivers

0 =
∑︁
𝑖, 𝑗

𝑥∗𝑖 𝑗 (𝑤𝑖 𝑗 − 𝑢∗
𝑖 − 𝑣∗𝑗 )

=
∑︁
𝑖, 𝑗

𝑥∗𝑖 𝑗 (𝑤𝑖 𝑗 − 𝑢∗
𝑖 − (𝑣𝜖𝑗 + ∇𝑗 ))

=
∑︁
𝑖, 𝑗

𝑥∗𝑖 𝑗 (𝑤𝑖 𝑗 − 𝑢∗
𝑖 − 𝑣𝜖𝑗 ) −

∑︁
𝑖, 𝑗

𝑥∗𝑖 𝑗∇𝑗

=
∑︁
𝑖, 𝑗

𝑥∗𝑖 𝑗 (𝑤𝑖 𝑗 − 𝑢∗
𝑖 − 𝑣𝜖𝑗 ) −

∑︁
𝑗

∇𝑗

≤
∑︁
𝑖, 𝑗

𝑥𝜖𝑖 𝑗 (𝑤𝑖 𝑗 − 𝑢𝜖𝑖 − 𝑣𝜖𝑗 ) −
∑︁
𝑗

∇𝑗

where ∇𝑗 = 𝑣∗𝑗 − 𝑣𝜖𝑗 . This, in turn, implies∑︁
𝑗

∇𝑗 ≤
∑︁
𝑖, 𝑗

𝑥𝜖𝑖 𝑗 (𝑤𝑖 𝑗 − 𝑢𝜖𝑖 − 𝑣𝜖𝑗 ) =
∑︁
𝑖, 𝑗

𝑤𝑖 𝑗𝑥
𝜖
𝑖 𝑗 −

∑︁
𝑖

𝑢𝜖𝑖 −
∑︁
𝑗

𝑣𝜖𝑗 (15)

Thus, the average difference of 𝑣𝜖 to 𝑣∗ is a lower bound for the complementary slackness as well as
the duality gap for the primal-dual pair (𝑥𝜖 , 𝑣𝜖 ). Since Algorithm 3 permits up to 𝑛 𝜖-modifications
per dual variable, we can extract the bound ∇𝑗 ≤ 𝑛𝜖 , i.e.

∑
𝑗 ∇𝑗 ≤ 𝑛2𝜖 . In Figure 3, we evaluate

experimentally the relation between a given 𝜖 and 1
𝑛
| |∇| |. Clearly, we notice a high correlation over

various problem classes, leading to an average dual approximation of roughly 𝑂 (𝜖).
Hence, 𝜖’s decay determines the ratio of scanned columns vs. the dual approximation and, by the

derivation above, the duality gap. Increasing 𝜖’s rate of decay leads to a faster decrease in the duality
gap at the cost of more scanned columns. Since we can measure the duality gap after each iteration
of Algorithm 3, we use it as the driving force to determine matching 𝜖 . This strategy resembles the
process of following the central path in interior point method for LPs where each iteration reduces
the complementary slackness (and, in turn, the duality gap) such that 𝑥𝑖𝑠𝑖 = 𝜇, 𝜇 > 0 and decay 𝜇.
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Initial 𝜖 and dual solution. In order to generate 𝜖0 and 𝑣0, we use fast heuristics to produce lower
and upper bounds on the optimal solution. Potential candidates for the upper bounds are any
feasible assignments, e.g.:

• 𝑐𝑢max =
∑

𝑖 max𝑗 𝑤𝑖 𝑗

• 𝑐𝑢id =
∑

𝑖 𝑤𝑖𝑖

• 𝑐𝑢greedy, the solution generated by greedily picking the lightest leftover edge and including
that into the matching or following various orders of iterating rows and assigning their
cheapest free column.

Lower bounds can come from
• 𝑐𝑙min =

∑
𝑖 min𝑗 𝑤𝑖 𝑗

• 𝑐𝑙𝑥 , the dual solution generated by using any feasible primal 𝑥 (inducing an assignment 𝐴)
and setting 𝑣𝐴(𝑖) = 𝑤𝑖𝐴(𝑖) , 𝑢𝑖 = 0.

We note that for any modified cost function 𝜏𝑖 𝑗 = 𝑤𝑖 𝑗 − 𝑢𝑖 − 𝑣 𝑗 ,
∑

𝑖 min𝑗 𝜏𝑖 𝑗 +
∑

𝑖 𝑢𝑖 +
∑

𝑗 𝑣 𝑗 is also a
lower bound if (𝑢, 𝑣) are feasible duals to the original problem.

In our implementation, we use the lower bound 𝑐𝑜𝑠𝑡𝑙 = 𝑐𝑙min as well as the upper bound 𝑐𝑜𝑠𝑡
𝑢 = 𝑐𝑢id.

A simple lower bound on 𝜖0 can then be calculated as

𝜖𝑙 := 𝑐𝑜𝑠𝑡𝑢 − 𝑐𝑜𝑠𝑡𝑙

16𝑛2 (16)

where𝑛 is the nuber of rows or columns and the 16 comes from fitting curves in Figure 3. At the same
time, we can calculate an approximation of the dual variables 𝑢0 := min𝑗 𝑤 :𝑗 and 𝑣0 := min𝑖 𝑤𝑖: −𝑢0.
Given the approximated dual and 𝜏0

𝑖 𝑗 := 𝑤𝑖 𝑗 − 𝑢0
𝑖 − 𝑣0

𝑗 , we update the estimates for both the lower
bound 𝑐𝑜𝑠𝑡𝑙

𝜏0 and 𝑐𝑜𝑠𝑡𝜏
0

𝑢 :=
∑

𝑖 𝑤𝑖 argmin𝑗≠𝐴′ (𝑘 ) |𝑘<𝑖 𝜏
0
𝑖 𝑗
. In case 𝑐𝑜𝑠𝑡𝑙

𝜏0 is equal to 𝑐𝑜𝑠𝑡𝜏
0

𝑢 ,𝑢0 and 𝑣0 represent
the correct dual variables, immediately solving the LAP.

Otherwise, we check if the reduction of the gap between upper and lower bound was sufficient
for 𝑢0 and 𝑣0. If the ratio 𝑐𝑜𝑠𝑡𝑢−𝑐𝑜𝑠𝑡𝑙/𝑐𝑜𝑠𝑡𝑢

𝜏0−𝑐𝑜𝑠𝑡𝑙𝜏0 is smaller than 4, a different order for the greedy
approach is selected. For this, the rows are sorted by the difference min𝑘≠argmin𝑙 𝜏0

𝑙 𝑗
𝜏0
𝑘 𝑗

− min𝑘 𝜏0
𝑘 𝑗

in decreasing order. This order is given as a permutation 𝑝 (𝑖). Assuming that a greedy selection
based on this order produces the correct solution, we calculate a new set of dual values 𝑣1 and
𝑢1 as follows: Every time we pick a new row 𝑝 (𝑖), we update all {𝑣1

𝑗 | 𝑗 ∈ 𝐴′(𝑝 (1) . . . 𝑝 (𝑖 − 1))}
so that no 𝑗 ∈ 𝐴′(𝑝 (1) . . . 𝑝 (𝑖 − 1)) will be selected. We also take prior rows 𝑝 (𝑙) into account
so that they will not select any column that was selected by rows 𝑝 (𝑘) with 𝑘 < 𝑙 . Finally, we
update the estimates for the upper and lower bounds with 𝜏1

𝑖 𝑗 := 𝑤𝑖 𝑗 − 𝑢1
𝑖 − 𝑣1

𝑗 again as 𝑐𝑜𝑠𝑡𝜏1

𝑙
and

𝑐𝑜𝑠𝑡𝜏
1

𝑢 :=
∑

𝑝 (𝑖)𝑤𝑝 (𝑖) argmin𝑗≠𝐴′ (𝑝 (𝑘 ) ) |𝑘<𝑖 𝜏1
𝑝 (𝑖 ) 𝑗

. Using the maximum lower bound 𝑐𝑜𝑠𝑡𝑙𝑚𝑎𝑥 and minimum
upper bound 𝑐𝑜𝑠𝑡𝑢𝑚𝑖𝑛 found during this process, we can now calculate

𝜖0 :=
(
𝑐𝑜𝑠𝑡𝑢𝑚𝑖𝑛 − 𝑐𝑜𝑠𝑡𝑙𝑚𝑎𝑥

) 3
2

𝑛
√
𝑐𝑜𝑠𝑡𝑢 − 𝑐𝑜𝑠𝑡𝑙

(17)

where the coefficients have been, again, deduced by fitting against the curves in Figure 3. If 𝜖0 is
larger 𝜖𝑙 , we set both to 0, reverting to the original SSP algorithm. Note that even though this is
only a heuristic for calculating these bounds, we did not encounter a single cost matrix where this
approach did not produce reasonable bounds.

𝜖-scaling. After each iteration, we update 𝜖 based on the total modification to 𝑣 that based on
epsilon 𝑣𝑒𝑝𝑠 and the modification that was not based on epsilon 𝑣𝑑 . If 𝑣𝑑 is larger than 𝑣𝑒𝑝𝑠 , the
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Fig. 4. Comparison of the numbers of rows scanned in the Dijkstra search between the original SSP algorithm
(left) and our 𝜖-Pricingapproach (right). Upper and lower theoretical bounds of each approach are given by
the grey area and the dotted line on the right. Eventually all cost matrices require fewer rows to be scanned
with our 𝜖-Pricingthan a random cost matrix with the original SSP algorithm (dotted cyan line on the right).

current value of 𝜖 was is already low enough to switch to 𝜖 = 0 in the next iteration. Otherwise we
calculate the next

𝜖 = min
(𝜖
4 ,

𝑣𝑒𝑝𝑠

8𝑛

)
. (18)

If 𝜖 becomes less than 𝜖𝑙 , we also set 𝜖 to 0 and continue with the next iteration.
Following this approach, we plot the resulting number of scanned columns, compared to a vanilla

SSP approach in Figure 4. The raw data for various test cases is presented in Table 1. As can easily
be seen, the worst case for our approach (disjoint 2D) requires less rows to be evaluated than the
best case (random) for the original SSP algorithm. The data in Table 1 also shows, that rate the
comparisons grow in is muss less for our implementation with at most 𝑛1.360 than for the original
SSP with at least 𝑛1.494.

4 SOLVING LARGE SCALE PROBLEMS
So far, we discussed algorithmic optimizations but in order to efficiently solve large, dense linear
assignment problems we have to look into the actual implementation as well. Initially, we can
assume that the cost matrix fits into the main memory of a single machine that we will be using. In
this case, the matrix can be assumed as given and each access requires roughly the same amount of
time.
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Since today’s computers typically consist of multiple cores (UniformMemory Architecture: UMA)
or even multiple CPUs with multiple cores (Non-Uniform Memory Architecture: NUMA), the most
obvious way to increase performance is to parallelize as many parts of the algorithm as possible.
As observed by Dell’Amico and Toth [2000], there are two options for splitting the computationally
most expensive part of the algorithm, i.e. the Dijkstra search, between multiple cores. They found
it to be more efficient to scan multiple columns at once instead of scanning a single column with
multiple cores. However, in our case, we rarely need to scan more than a couple of columns per
search and therefore have to resort to the latter, potentially less efficient approach of scanning
a single column in parallel. Fortunately, the efficiency of this approach gets better the larger the
problem becomes as we will see in Section 5. In our implementation, we chose to fix the amount of
columns each thread is responsible for during the Dijkstra search as this allows us to partition the
cost matrix between the cores as well. This reduces synchronization overhead while increasing the
total available memory bandwidth, especially for NUMA systems with multiple partitions. Another
observation that was made in the parallel implementation is that critical sections guarded by locks
are very expensive. If we store per thread data instead, use barriers for synchronization and the
master thread to collect and distribute all results, the performance is vastly increased. Again this
affects NUMA systems more than UMA systems and is much more visible when solving smaller
problems. When implementing our algorithm on the GPU, we also noticed that a single GPU is
sufficient to solve problems with up to 256000 × 256000 arcs, as long as the cost matrix can be
calculate on the GPU. Larger problems benefit from using multiple GPUs.

If the cost matrix does not fit into memory anymore, we have to be able to calculate the costs on
demand. Looking at our algorithm, we can see that we only ever need to access one row of the
matrix at a time. In order to not be bound by the computation time of calculating large parts of the
matrix again and again, we employ a cache holding as many rows as we can fit into the memory
that has been reserved for the solver. Since individual rows will be accessed more often over time
than others, our cache replacement scheme should take this into account. We implemented two
different caching schemes that can be used for different ratios between cache and matrix size:
Segmented least recently used (SLRU) [Karedla et al. 1994] and least frequently used (LFU). In
practice, we found that LFU performs better for caches that can fit at least 1/4th of the entire cost
matrix, while SLRU performs better for smaller caches. The most extreme case, i.e. storing only
a single row of the cost matrix at a time, also works but the computational requirement heavily
depend on calculating the cost matrix in that case. If the parallel algorithm is used, the cost matrix
is calculated in parallel as well. Besides using the CPU to calculate the cost matrix on demand, it
can also be loaded from disk, be transferred over the network, or calculated by an accelerator card
such as a GPU. For efficiently handling all these cases, a cost function can be supplied by the user
either as a lambda function that calculates a single value or as a lambda function that calculates a
(partial) row. As an alternative, the user can also directly specify a cost matrix to be used. In case of
the GPU solver, the user only has to implement a device kernel that calculates a part of a given
row on the GPU and stores the result in device memory. Using this approach, we can solve dense
problems with more than 1, 000, 000 × 1, 000, 000 arcs as we will see in Section 5.

5 RESULTS
As already mentioned in Section 3, we use the following classes of cost matricies for performance
evaluation:

random A cost matrix with random double precision floating point values in range [0.0...1.0]
that follow a uniform distribution
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geometric Cost based on the euclidean squared distance between two sets of random point
in R2. The points are uniformly distributed in [(0.0, 0.0) ... (1.0, 1.0)] and the cost values are
stored in double precision floating point.

disjoint Cost based on the euclidean squared distance between two sets of points in R2. The
points are split into four groups of equal size and evenly distributed in [(0.0, 0.0) ... (1.0, 1.0)],
[(0.0, 1.0) ... (1.0, 2.0)], [(1.0, 0.0) ... (2.0, 1.0)] and [(1.0, 1.0) ... (2.0, 2.0)] with the first and
fourth groups forming the source points while the second and third group form the targets.
Again, the cost values are stored in double precision floating point.

sanity Matrix𝐶 = 0.1 (𝐽 − 𝐼 ) + 𝑗 ⊗ 𝑎 + 𝑏 ⊗ 𝑗 (identity matrix 𝐼 , unity matrix 𝐽 and unity vector
𝑗 ) produced by using two random vectors 𝑎 and 𝑏 with 0 ≥ 𝑎𝑖 ≥ 1 ∧ 0 ≥ 𝑏𝑖 ≥ 1. The
solution 𝑋 = 𝐼 for this problem is known by construction can therefore used to verify that
the algorithm produces the correct solution.

low rank The cost matrix𝐶 =
∑𝑛

𝑖=1 𝑎𝑖 ⊗ 𝑎𝑖 is based on the sum of outer vector products which
produces a symmetric matrix of rank 𝑛 for 𝑛 linear independent vectors 𝑎𝑖 with 𝑎𝑖 𝑗 ≥ 0.

images Cost based on the image metric used by Rubner et al. [2000] which is a Euclidean
squared distance in R5. However, instead of operating on a very limited number of quantized
bins (18.5 on average), we use the full precision color and position information in single
precision floating point.

All performance measurements have been generated using the following hard and software:
CPU performance: Dual slot (NUMA; 2× Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz) 16

core (32 virtual cores with hyperthreading) machine with 256GB (128GB per slot) of main
memory running Ubuntu 16.04.4 LTS

GPU performance GTX980: Dual slot (NUMA; 2× Intel(R) Xeon(R) CPU E5-2687W v3 @
3.10GHz) 20 core (40 virtual cores with hyperthreading) machine with 128GB (64GB per slot)
of main memory running Ubuntu 16.04.4 LTS with 8× GeForce GTX 980, each with 4GB
memory

GPU performance T4: Dual slot (NUMA; 2× Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz)
20 core (40 virtual cores with hyperthreading) machine with 256GB (128GB per slot) of main
memory running Ubuntu 18.04.4 LTS with 8× Tesla T4, each with 15GB memory

CPU compiler: GNU C++ compiler (g++ 7.4.0)
GPU compiler: NVCC compiler from CUDA 10.2 toolkit (V10.2.89)

Random numbers were generated using the Mersenne twister and uniform distribution implementa-
tions of the STL. For the cached performance measurements on the CPU, the memory consumption
was limited to use 240GB for the cached rows (a total of roughly 242GB). For the GPU tests, the
cache size was limited to 3GB of GPU memory (a total of 24GB in case of using all 8 GPUs). The
total memory consumption on each GPU was roughly 3.5GB for the largest test cases. It was also
verified that all solutions, with/without 𝜖 and with/without parallel computations on both the CPU
and GPU, produced the same solution.
The initial set of performance measurements compares the run time for the different random

based test cases. As seen in Figure 5, the run time heavily depends on how hard the LAP is to solve.
The rank 1 matrix starts out at roughly 1/20th of the performance of the purely random cost matrix
at 1000 × 1000 arcs. However, when looking at a problem size of 32000 × 32000 arcs, the rank 1
matrix required roughly 180 times longer, an additional factor of about 9.
When switching to our 𝜖-Pricing algorithm, this behavior changes and the run time becomes

less dependent on how hard the LAP is to solve. It stays roughly within a factor of about 30 for a
320000 × 32000 arc problem between easiest and hardest problem tested (see right side of Figure 5).
In addition, the run time of the disjoint cost matrix with 𝜖-Pricing is less than the same as the run
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Fig. 5. Run time of solving random, geometric (regular and disjoint) and sanity cost matrices of various sizes
with double precision floating point arithmetic. Regular SSP algorithm (left) compared against our 𝜖-Pricing
approach (right). As can be seen on the right, the time complexity of hard to solve LAPs is reduced towards
the time complexity of easy to solve ones.

time of the random cost matrix without 𝜖-Pricing. Note that Figure 5 does not contain the setup
time of the matrix but does contain the initial estimate of 𝑣 and 𝜖0.

When further analyzing the performance of our implementation up to this point, we can see that
it is mainly limited by the Dijkstra path search. While the overhead for managing the workload
of individual threads and inter-thread communication is quite significant for smaller problems, a
problem size of 2000 × 2000 can already see some benefit of running multiple threads. For larger
problem sizes, we see a speedup of up to 12.6 with our 32 core NUMA machine which translates
into an efficiency of almost 40% (see Figure 6). The reason for this limit is both the amount of
work that needs to be carried out sequentially as well as synchronization overhead and memory
bandwidth limits. Note that the memory bandwidth increase reported by the STREAM test between
a single thread (12, 792.7 MB/s) and 32 threads (61, 045.2 MB/s) is only a factor of 4.77. In addition,
these speedups can only be realized when preventing threads from switching between cores and
thus allowing local storage of their part of the cost matrix. In practice, setting “OMP_PROC_BIND”
to “close” and “OMP_PLACES” to “cores” produced the best performance. When comparing these
results to our GPU based implementation in Figure 7 and Figure 8, we can see that it is about one
order of magnitude faster for our 1, 024, 000× 1, 024, 000 test case. However, we can also see that the
GPUs are still not fully utilized since the slope is still lower compared to the CPU version in Figure
6. Because of this, the GPU version adds very little overhead for re-evaluating the cost matrix when
compared against the CPU version.
Up to this point, all cost functions were based on random values to some extend. However, for

most problems, we cannot assume an underlying uniform random distribution. This becomes quite
evident when looking at the image metric of Rubner et al. [2000] applied to a full cross-correlation
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Fig. 6. Comparison of run times for different problem sizes using our cache-based (220GB) multi-threaded
solver on our 32 core NUMA test machine. Note that the cost matrix of problems larger than 128000 × 128000
no longer fits into memory (dashed line).
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Fig. 7. Comparison of run times for different problem sizes using our GPU-based (8 × 3GB = 24GB) solver
on our 8 × GTX 980 test machine. The random cost matrix was calculated with the CPU (up to 122GB) and
is transferred on demand, all other cost matrices are calculated on the GPU. Note that the cost matrix of
problems larger than 45254 × 45254 no longer fits into GPU memory (dashed line).

ACM Trans. Math. Softw., Vol. 47, No. 2, Article 18. Publication date: April 2021.



18:22 Guthe, S., Thuerck, D.

103 104 105 106
10−1

100

101

102

103

104

number of sources/targets (𝑛)

tim
e
in

se
c

random
R2

R2 disjoint
sanity
rank 1
rank 2
rank 4
rank 8

Fig. 8. Comparison of run times for different problem sizes using our GPU-based (8 × 14GB = 112GB) solver
on our 8 × Tesla T4 test machine. The random cost matrix was calculated with the CPU (up to 122GB) and
is transferred on demand, all other cost matrices are calculated on the GPU. Note that the cost matrix of
problems larger than 90509 × 90509 no longer fits into GPU memory (dashed line).
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Fig. 9. From left to right, single threaded vanilla SSP, 32 threads with epsilon and 8 GPUs (GTX980 and Tesla
T4) with epsilon. Image sizes approximately 11,000, 44,000 and 176,000 pixel, every image compared against
every other in the same bin.

of 10 images (see Figure 10). For testing purposes, the images were scaled to three different sizes and
each image was tested against all other images of the same size. The final cost of the LAP solution
was used as a distance metric between the images and is visualized using multi-dimensional scaling
in Figure 11. It turns out that the run time of the straightforward successive shortest path algorithm
is very close to our random based worst-case test and we can already see a speedup of more than
one order of magnitude for a problem size of 11000× 11000 (see Figure 9 when using our 𝜖-Pricing).
When using our parallel implementation, this speedup is further increased to almost two orders of
magnitude for this small problem. Also note that the spread in run time is reduced from a factor of 4
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Fig. 10. Test images from MIT-Adobe FiveK Dataset [Bychkovsky et al. 2011].

Fig. 11. Visualization of the linear assignment costs between image pairs using multidimensional scaling in
2D.

down to a factor of 2.2. For the largest problems with a size of about 176000× 176000, we can see an
estimated performance gain of more than three orders of magnitude when comparing the parallel
implementation with 𝜖-Pricing against the original SSP algorithm. Note that the original algorithm
was not actually run for these problem sizes as the estimated run time would easily exceed 20 days
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for most of the 45 image comparisons whereas our parallel algorithm required about 20 minutes on
average.

When comparing our algorithm with a parallel implementation of the forward auction algorithm
of Bertsekas [1981], we need to add a final stage that scales 𝜖 to 0 if we use non-integer cost matrices.
For better comparison, the implementation uses the same code base as our algorithm. As can be
seen in Table 2, the run time performance becomes very unpredictable. In general, our approach
scales well for all cost matrices while the auction algorithm, including our optimized version, only
scales well for some cost matrices. Further investigation for our optimized auction algorithm is
therefore required and is part of ongoing research. In additions, the current version of the auction
algorithm implementation does not support matrices that do not fit into main memory.

When comparing the run time of our CPU based algorithm with the implementation of Date and
Nagi [2016] (see Table 3), we can clearly see that the computational and/or bandwidth requirement
for our approach is several orders of magnitude smaller. In fact, when comparing the corresponding
GPU run times, we can see the GPUs are vastly underutilized when solving a 40000 × 40000 matrix.
The run time is in this case limited by the number of kernel calls that need to be issued and by the
synchronization between GPUs or between GPU and CPU. Overall, the run time performance of
our CPU based implementation is better when compared to Date and Nagi [2016] even when their
approach is using 16 GPUs. Additionally, they do not report any numbers for matrices larger than
40, 000 × 40, 000 or any other cost matrix than random integer values.

6 CONCLUSION
In this paper, we presented a new algorithm and its implementation for CPUs and GPUs in Uniform
and Non-Uniform Memory Architectures, that is able to solve LAPs that are, to our knowledge,
several orders of magnitude larger than previously solved problems. We evaluated our approach on
different random based cost matricies, presenting both easy as well as hard to solve problems, and
on application based cost matricies. We showed that we can efficiently solve LAPs with more than 1
trillion (1,024,000 × 1,024,000) arcs, even though the matrix no longer fits into the available memory.
Instead we rely on caching and calculating or reading cost values on demand. In cases where values
can not be calculated, they need to be read from disk limiting the run time performance to at the
time it takes to read each line that is being scanned. We also presented a software system that can
be used to readily solve an LAP based on arbitrary user defined cost functions that can simply be
passed as lambda functions, CUDA device lambda functions or CUDA kernels to the solver.
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N Date and Nagi our
OMP-8 GPU 8xGPU OMP-8 OMP-16 OMP-32 GTX 980 Tesla T4

10000 33.90 4.93 4.97 0.87 0.75 1.52 2.42 2.34
14142 (77.11)1 6.57 6.76 1.66 1.42 2.28 3.83 3.64
20000 137.98 8.26 8.48 3.36 2.83 3.99 5.89 5.61
28284 — — 11.43 6.99 5.78 6.85 9.65 8.67
40000 — — 14.912 15.13 13.15 11.50 19.943 13.87
56568 — — — 35.05 29.35 21.57 34.324 25.853

80000 — — — 81.39 59.64 42.90 61.375 48.294

113137 — — — 173.79 129.88 88.84 134.015 75.945

160000 — — — 574.61 339.40 193.64 245.545 173.355

Table 3. Comparison of the run time performance in seconds of our CPU and GPU based algorithm with
the Hungarian algorithm implementation of Date and Nagi [2016] (fastest CPU and GPU version in bold). 1:
time for 𝑁 = 15000. 2: time for 16 GPU version. 3: time for 2 GPUs. 4 time for 4 GPUs. 5: time for 8 GPUs.
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